tan(∠A1+∠A2)=-tanθ=.而tanA1=,tanA2=,代入tanθ=-.x2=a2(1-),tanθ===-是的增函數(shù).當y=b時最大.同理當P為短軸頂點時.θ最大.此時tanθ=- 查看更多

 

題目列表(包括答案和解析)

設(shè)P1(x1,y1),P1(x2,y2),…,Pn(xn,yn)(n≥3,n∈N) 是二次曲線C上的點,且a1=|OP1|2,a2=|OP2|2,…,an=|OPn|2構(gòu)成了一個公差為d(d≠0) 的等差數(shù)列,其中O是坐標原點.記Sn=a1+a2+…+an
(1)若C的方程為
x2
9
-y2=1,n=3.點P1(3,0) 及S3=162,求點P3的坐標;(只需寫出一個)
(2)若C的方程為y2=2px(p≠0).點P1(0,0),對于給定的自然數(shù)n,證明:(x1+p)2,(x2+p)2,…,(xn+p)2成等差數(shù)列;
(3)若C的方程為
x2
a2
+
y2
b2
=1
(a>b>0).點P1(a,0),對于給定的自然數(shù)n,當公差d變化時,求Sn的最小值.
符號意義 本試卷所用符號 等同于《實驗教材》符號
向量坐標
a
={x,y}
a
=(x,y)
正切 tg tan

查看答案和解析>>

已知數(shù)列{an}滿足a1=1,an+1=an+
an2+1
,令an=tanθn(0<θn
π
2
)
,
求證:(1)數(shù)列{θn-
π
2
}
是等比數(shù)列.
(2)a1+a2+…+an
(n-1)π
2

查看答案和解析>>

已知方程tan2x一tan x+1=0在x[0,n)( nN*)內(nèi)所有根的和記為an

(1)寫出an的表達式;(不要求嚴格的證明)

(2)記Sn = a1 + a2 +…+ an求Sn

(3)設(shè)bn =(kn一5) ,若對任何nN* 都有anbn,求實數(shù)k的取值范圍.

 

查看答案和解析>>

設(shè)P1x1,y1), P1x2,y2),…, Pnxn,yn)(n≥3,n∈N) 是二次曲線C上的點, 且a1=2, a2=2, …, an=2構(gòu)成了一個公差為d(d≠0) 的等差數(shù)列, 其中O是坐標原點. 記Sn=a1+a2+…+an.

(1)若C的方程為-y2=1,n=3. 點P1(3,0) 及S3=162, 求點P3的坐標;(只需寫出一個)

(2)若C的方程為y2=2px(p≠0). 點P1(0,0), 對于給定的自然數(shù)n, 證明:(x1+p)2, (x2+p)2, …,(xn+p)2成等差數(shù)列;

(3)若C的方程為a>b>0). 點P1a,0), 對于給定的自然數(shù)n, 當公差d變化時, 求Sn的最小值.

符號意義

本試卷所用符號

等同于《實驗教材》符號

向量坐標

={x,y}

=(x,y)

正切

tg

tan

查看答案和解析>>

設(shè)P1(x1,y1),P1(x2,y2),…,Pn(xn,yn)(n≥3,n∈N) 是二次曲線C上的點,且a1=|OP1|2,a2=|OP2|2,…,an=|OPn|2構(gòu)成了一個公差為d(d≠0) 的等差數(shù)列,其中O是坐標原點.記Sn=a1+a2+…+an
(1)若C的方程為
x2
9
-y2=1,n=3.點P1(3,0) 及S3=162,求點P3的坐標;(只需寫出一個)
(2)若C的方程為y2=2px(p≠0).點P1(0,0),對于給定的自然數(shù)n,證明:(x1+p)2,(x2+p)2,…,(xn+p)2成等差數(shù)列;
(3)若C的方程為
x2
a2
+
y2
b2
=1
(a>b>0).點P1(a,0),對于給定的自然數(shù)n,當公差d變化時,求Sn的最小值.
符號意義 本試卷所用符號 等同于《實驗教材》符號
向量坐標
a
={x,y}
a
=(x,y)
正切 tg tan

查看答案和解析>>


同步練習冊答案