∴cosα=.即為所求 查看更多

 

題目列表(包括答案和解析)

請先閱讀:

設平面向量=(a1,a2),=(b1,b2),且的夾角為è,

因為=||||cosè,

所以≤||||.

,

當且僅當è=0時,等號成立.

(I)利用上述想法(或其他方法),結合空間向量,證明:對于任意a1,a2,a3,b1,b2,b3∈R,都有成立;

(II)試求函數的最大值.

查看答案和解析>>

請先閱讀:
設平面向量=(a1,a2),=(b1,b2),且的夾角為θ,
因為=||||cosθ,
所以≤||||.

當且僅當θ=0時,等號成立.
(I)利用上述想法(或其他方法),結合空間向量,證明:對于任意a1,a2,a3,b1,b2,b3∈R,都有成立;
(II)試求函數的最大值.

查看答案和解析>>

請先閱讀:
設平面向量
a
=(a1,a2),
b
=(b1,b2),且
a
b
的夾角為θ,
因為
a
b
=|
a
||
b
|cosθ,
所以
a
b
≤|
a
||
b
|.
a1b1+a2b2
a
2
1
+
a
2
2
×
b
2
1
+
b
2
2

當且僅當θ=0時,等號成立.
(I)利用上述想法(或其他方法),結合空間向量,證明:對于任意a1,a2,a3,b1,b2,b3∈R,都有(a1b1+a2b2+a3b3)2≤(
a
2
1
+
a
2
2
+
a
2
3
)(
b
2
1
+
b
2
2
+
b
2
3
)
成立;
(II)試求函數y=
x
+
2x-2
+
8-3x
的最大值.

查看答案和解析>>

請先閱讀:
設平面向量
a
=(a1,a2),
b
=(b1,b2),且
a
b
的夾角為θ,
因為
a
b
=|
a
||
b
|cosθ,
所以
a
b
≤|
a
||
b
|.
a1b1+a2b2
a21
+
a22
×
b21
+
b22

當且僅當θ=0時,等號成立.
(I)利用上述想法(或其他方法),結合空間向量,證明:對于任意a1,a2,a3,b1,b2,b3∈R,都有(a1b1+a2b2+a3b3)2≤(
a21
+
a22
+
a23
)(
b21
+
b22
+
b23
)
成立;
(II)試求函數y=
x
+
2x-2
+
8-3x
的最大值.

查看答案和解析>>

設△ABC的內角A、BC所對的邊分別為a、b、c,已知a=1,b=2,cosC=. (1)求△ABC的周長;       (2)求cos(AC)的值.

【解析】(1)借助余弦定理求出邊c,直接求周長即可.(2)根據兩角差的余弦公式需要求sinC,sinA,cosA,由正弦定理即可求出sinA,進而可求出cosA.sinC可由cosA求出,問題得解.

 

查看答案和解析>>


同步練習冊答案