求函數(shù)在點(diǎn)(2.4)處的切線斜率. 查看更多

 

題目列表(包括答案和解析)

定義F(x,y)=(1+x)y,x,y∈(0,+∞),
(1)令函數(shù)f(x)=F(1,log2(x2-4x+9))的圖象為曲線C1,曲線C1與y軸交于點(diǎn)A(0,m),過(guò)坐標(biāo)原點(diǎn)O作曲線C1的切線,切點(diǎn)為B(n,t)(n>0),設(shè)曲線C1在點(diǎn)A、B之間的曲線段與線段OA、OB所圍成圖形的面積為S,求S的值.
(2)當(dāng)x,y∈N*且x<y時(shí),證明F(x,y)>F(y,x);
(3)令函數(shù)g(x)=F(1,log2(x3+ax2+bx+1))的圖象為曲線C2,若存在實(shí)數(shù)b使得曲線C2在x0(-4<x0<-1)處有斜率為-8的切線,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

定義F(x,y)=(1+x)y,x,y∈(0,+∞),
(1)令函數(shù)f(x)=F(1,log2(x2-4x+9))的圖象為曲線C1,曲線C1與y軸交于點(diǎn)A(0,m),過(guò)坐標(biāo)原點(diǎn)O作曲線C1的切線,切點(diǎn)為B(n,t)(n>0),設(shè)曲線C1在點(diǎn)A、B之間的曲線段與線段OA、OB所圍成圖形的面積為S,求S的值.
(2)當(dāng)x,y∈N*且x<y時(shí),證明F(x,y)>F(y,x);
(3)令函數(shù)g(x)=F(1,log2(x3+ax2+bx+1))的圖象為曲線C2,若存在實(shí)數(shù)b使得曲線C2在x(-4<x<-1)處有斜率為-8的切線,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

定義F(x,y)=(1+x)y,x,y∈(0,+∞),
(1)令函數(shù)f(x)=F(1,log2(x2-4x+9))的圖象為曲線C1,曲線C1與y軸交于點(diǎn)A(0,m),過(guò)坐標(biāo)原點(diǎn)O作曲線C1的切線,切點(diǎn)為B(n,t)(n>0),設(shè)曲線C1在點(diǎn)A、B之間的曲線段與線段OA、OB所圍成圖形的面積為S,求S的值.
(2)當(dāng)x,y∈N*且x<y時(shí),證明F(x,y)>F(y,x);
(3)令函數(shù)g(x)=F(1,log2(x3+ax2+bx+1))的圖象為曲線C2,若存在實(shí)數(shù)b使得曲線C2在x0(-4<x0<-1)處有斜率為-8的切線,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

設(shè)函數(shù)數(shù)學(xué)公式,在其圖象上一點(diǎn)P(x,y)處的切線的斜率記為f(x).
(1)若方程f(x)=0有兩個(gè)實(shí)根分別為-2和4,求f(x)的表達(dá)式;
(2)若g(x)在區(qū)間[-1,3]上是單調(diào)遞減函數(shù),求a2+b2的最小值.

查看答案和解析>>

設(shè)函數(shù),在其圖象上一點(diǎn)P(x,y)處的切線的斜率記為f(x).
(1)若方程f(x)=0有兩個(gè)實(shí)根分別為﹣2和4,求f(x)的表達(dá)式;
(2)若g(x)在區(qū)間[﹣1,3]上是單調(diào)遞減函數(shù),求a2+b2的最小值.

查看答案和解析>>


同步練習(xí)冊(cè)答案