(2)若A可逆.設(shè)為A-1.則A-1 A=A-1A.=與已知矛盾.故A不可呢.幾何意義.當一個矩陣將兩個不同元素變?yōu)橥辉貢r.必非一一對應(yīng).矩陣不可逆 查看更多

 

題目列表(包括答案和解析)

已知拋物線C:y2=2px(p>0)上任意一點到焦點F的距離比到y(tǒng)軸的距離大1.
(1)求拋物線C的方程;
(2)若過焦點F的直線交拋物線于M、N兩點,M在第一象限,且|MF|=2|NF|,求直線MN的方程;
(3)求出一個數(shù)學問題的正確結(jié)論后,將其作為條件之一,提出與原來問題有關(guān)的新問題,我們把它稱為原來問題的一個“逆向”問題.
例如,原來問題是“若正四棱錐底面邊長為4,側(cè)棱長為3,求該正四棱錐的體積”.求出體積
16
3
后,它的一個“逆向”問題可以是“若正四棱錐底面邊長為4,體積為
16
3
,求側(cè)棱長”;也可以是“若正四棱錐的體積為
16
3
,求所有側(cè)面面積之和的最小值”.
現(xiàn)有正確命題:過點A(-
p
2
,0)
的直線交拋物線C:y2=2px(p>0)于P、Q兩點,設(shè)點P關(guān)于x軸的對稱點為R,則直線RQ必過焦點F.
試給出上述命題的“逆向”問題,并解答你所給出的“逆向”問題.

查看答案和解析>>

已知拋物線C:y2=2px(p>0)上任意一點到焦點F的距離比到y(tǒng)軸的距離大1.
(1)求拋物線C的方程;
(2)若過焦點F的直線交拋物線于M、N兩點,M在第一象限,且|MF|=2|NF|,求直線MN的方程;
(3)求出一個數(shù)學問題的正確結(jié)論后,將其作為條件之一,提出與原來問題有關(guān)的新問題,我們把它稱為原來問題的一個“逆向”問題.
例如,原來問題是“若正四棱錐底面邊長為4,側(cè)棱長為3,求該正四棱錐的體積”.求出體積
16
3
后,它的一個“逆向”問題可以是“若正四棱錐底面邊長為4,體積為
16
3
,求側(cè)棱長”;也可以是“若正四棱錐的體積為
16
3
,求所有側(cè)面面積之和的最小值”.
現(xiàn)有正確命題:過點A(-
p
2
,0)
的直線交拋物線C:y2=2px(p>0)于P、Q兩點,設(shè)點P關(guān)于x軸的對稱點為R,則直線RQ必過焦點F.
試給出上述命題的“逆向”問題,并解答你所給出的“逆向”問題.

查看答案和解析>>

本題(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.
(1)選修4-2:矩陣與變換
已知矩陣A=
33
cd
,若矩陣A屬于特征值6的一個特征向量為
α
=
1
1
,屬于特征值1的一個特征向量為
β
=
&-2

(Ⅰ)求矩陣A;
(Ⅱ)判斷矩陣A是否可逆,若可逆求出其逆矩陣A-1
(2)選修4-4:坐標系與參數(shù)方程
已知直線的極坐標方程為ρsin(θ+
π
4
)=
2
2
,圓M的參數(shù)方程為
x=2cosθ
y=-2+2sinθ
(其中θ為參數(shù)).
(Ⅰ)將直線的極坐標方程化為直角坐標方程;
(Ⅱ)求圓M上的點到直線的距離的最小值.
(3)選修4-5:不等式選講,設(shè)函數(shù)f(x)=|x-1|+|x-a|;
(Ⅰ)若a=-1,解不等式f(x)≥3;
(Ⅱ)如果關(guān)于x的不等式f(x)≤2有解,求a的取值范圍.

查看答案和解析>>


同步練習冊答案