∵cos∠AEF=. 查看更多

 

題目列表(包括答案和解析)

如圖,在平面直角坐標系中,點A,C分別在x軸,y軸上,四邊形ABCO為矩形,AB=4,點D與點A關(guān)于y軸對稱,cos∠ACB=
35
,點E,F(xiàn)分別是線段DA,AC上的動點(點E不與點A,D重合),且∠CEF=∠ACB.
(1)求證:△AEF與△DCE相似;
(2)設(shè)DE=x,y=CF,求y關(guān)于x的函數(shù)解析式,并求自變量x的取值范圍.
(3)當DE的長為多少時,CF長最小,最小值為多少?并求此時△CED的內(nèi)切圓的圓心G的坐標.

查看答案和解析>>

某地下車庫出口處“兩段式欄桿”如圖1所示,點A是欄桿轉(zhuǎn)動的支點,點E是欄桿兩段的連接點.當車輛經(jīng)過時,欄桿AEF升起后的位置如圖2所示,其示意圖如圖3所示,其中AB⊥BC,EF∥BC,∠EAB=1430,AB=AE=1.2米,求當車輛經(jīng)過時,欄桿EF段距離地面的高度(即直線EF上任意一點到直線BC的距離).(結(jié)果精確到0.1米,欄桿寬度忽略不計參考數(shù)據(jù):sin 37° ≈ 0.60,cos 37° ≈ 0.80,tan 37° ≈ 0.75.)

 

 

查看答案和解析>>

某地下車庫出口處“兩段式欄桿”如圖1所示,點A是欄桿轉(zhuǎn)動的支點,點E是欄桿兩段的連接點.當車輛經(jīng)過時,欄桿AEF升起后的位置如圖2所示,其示意圖如圖3所示,其中AB⊥BC,EF∥BC,∠EAB=143°,AB=AE=1.2米,求當車輛經(jīng)過時,欄桿EF段距離地面的高度(即直線EF上任意一點到直線BC的距離).
(結(jié)果精確到0.1米,欄桿寬度忽略不計參考數(shù)據(jù):sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75.)

查看答案和解析>>

某地下車庫出口處“兩段式欄桿”如圖1所示,點A是欄桿轉(zhuǎn)動的支點,點E是欄桿兩段的連接點.當車輛經(jīng)過時,欄桿AEF升起后的位置如圖2所示,其示意圖如圖3所示,其中AB⊥BC,EF∥BC,∠EAB=143°,AB=AE=1.2米,求當車輛經(jīng)過時,欄桿EF段距離地面的高度(即直線EF上任意一點到直線BC的距離).
(結(jié)果精確到0.1米,欄桿寬度忽略不計參考數(shù)據(jù):sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75.)

查看答案和解析>>

某地下車庫出口處“兩段式欄桿”如圖1所示,點A是欄桿轉(zhuǎn)動的支點,點E是欄桿兩段的連接點.當車輛經(jīng)過時,欄桿AEF升起后的位置如圖2所示,其示意圖如圖3所示,其中AB⊥BC,EF∥BC,∠EAB=1430,AB=AE=1.2米,求當車輛經(jīng)過時,欄桿EF段距離地面的高度(即直線EF上任意一點到直線BC的距離).(結(jié)果精確到0.1米,欄桿寬度忽略不計參考數(shù)據(jù):sin 37° ≈ 0.60,cos 37° ≈ 0.80,tan 37° ≈ 0.75.)

查看答案和解析>>


同步練習冊答案