題目列表(包括答案和解析)
如圖所示,二次函數(shù)()的圖像與軸分別交于(,)、(,)兩點(diǎn),且與軸交于點(diǎn);
(1)求該拋物線的解析式,并判斷的形狀;
(2)在軸上方的拋物線上有一點(diǎn),且以、、、四點(diǎn)為頂點(diǎn)的四邊形是等腰梯形,請直接寫
出點(diǎn)的坐標(biāo);
(3)在此拋物線上是否存在點(diǎn)P,使得以、、、四點(diǎn)為頂點(diǎn)的四邊形是直角梯形?若存在,求
(4)出點(diǎn)的坐標(biāo);若不存在,說明理由.
如圖,拋物線的頂點(diǎn)為D,與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C,且OB = 2OC= 3.
(1)求a,b的值;
(2)將45°角的頂點(diǎn)P在線段OB上滑動(dòng)(不與點(diǎn)B重合),該角的一邊過點(diǎn)D,另一邊與BD交于點(diǎn)Q,設(shè)P(x,0),y2=DQ,試求出y2關(guān)于x的函數(shù)關(guān)系式;
(3)在同一平面直角坐標(biāo)系中,兩條直線x = m,x = m+分別與拋物線y1交于點(diǎn)E,G,與y2的函數(shù)圖象交于點(diǎn)F,H.問點(diǎn)E、F、H、G圍成四邊形的面積能否為?若能,求出m的值;若不能,請說明理由.
【解析】通過B(3,0),C(0,)兩點(diǎn),求出拋物線的解析式,
(2)作DN⊥AB,由y1求出AB=4,DN=BN=2,DB=2,由根據(jù)勾股定理得jPD2-(1-x)2=4,又因?yàn)椤?i>MPQ∽ △MBP,所以kPD2=DQ´DB=y2´2,由j、k得y2與x的函數(shù)關(guān)系式
(3)假設(shè)E、F、H、G圍成四邊形的面積能為,通過y1求出E、G、F、H的坐標(biāo),求出EF、GH的長度,
通過四邊形EFHG的面積求出m的值
如圖,拋物線的頂點(diǎn)為D,與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C,且OB = 2OC= 3.
(1)求a,b的值;
(2)將45°角的頂點(diǎn)P在線段OB上滑動(dòng)(不與點(diǎn)B重合),該角的一邊過點(diǎn)D,另一邊與BD交于點(diǎn)Q,設(shè)P(x,0),y2=DQ,試求出y2關(guān)于x的函數(shù)關(guān)系式;
(3)在同一平面直角坐標(biāo)系中,兩條直線x = m,x = m+分別與拋物線y1交于點(diǎn)E,G,與y2的函數(shù)圖象交于點(diǎn)F,H.問點(diǎn)E、F、H、G圍成四邊形的面積能否為?若能,求出m的值;若不能,請說明理由.
【解析】通過B(3,0),C(0,)兩點(diǎn),求出拋物線的解析式,
(2)作DN⊥AB,由y1求出AB=4,DN=BN=2,DB=2,由根據(jù)勾股定理得jPD2-(1-x)2=4,又因?yàn)椤?i>MPQ ∽ △MBP,所以kPD2=DQ´DB=y2´2,由j、k得y2與x的函數(shù)關(guān)系式
(3)假設(shè)E、F、H、G圍成四邊形的面積能為,通過y1求出E、G、F、H的坐標(biāo),求出EF、GH的長度,
通過四邊形EFHG的面積求出m的值
如圖,拋物線y1=ax2-2ax+b經(jīng)過A(-1,0), C(2,)兩點(diǎn),與x軸交于另一點(diǎn)B;
(1) 求此拋物線的解析式;
(2) 若拋物線的頂點(diǎn)為M,點(diǎn)P為線段OB上一動(dòng)點(diǎn)(不與點(diǎn)B重合),點(diǎn)Q在線段MB上移動(dòng),且∠MPQ=45°,設(shè)線段OP=x,MQ=y2,求y2與x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(3) 在同一平面直角坐標(biāo)系中,兩條直線x=m,x=n分別與拋物線交于點(diǎn)E,G,與(2)中的
函數(shù)圖像交于點(diǎn)F,H。問四邊形EFHG能否為平行四邊形?若能,求m,n之間的數(shù)量關(guān)系;若不能,請說明理由。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com