⑤ 聯(lián)立④⑤解得 查看更多

 

題目列表(包括答案和解析)

為了解某班學生喜愛打羽毛球是否與性別有關,對本班50人進行了問卷調查得到了如下的列聯(lián)表:

 

 

喜愛打羽毛球

不喜愛打羽毛球

合計

男生

 

5

 

女生

10

 

 

 

 

 

50

 

 

 

 

 

已知在全部50人中隨機抽取1人抽到不喜愛打羽毛球的學生的概率

(1)請將上面的列聯(lián)表補充完整;

(2)是否有99.5%的把握認為喜愛打羽毛球與性別有關?說明你的理由;

(3)已知喜愛打羽毛球的10位女生中,還喜歡打籃球,還喜歡打乒乓球,還喜歡踢足球,現(xiàn)在從喜歡打籃球、喜歡打乒乓球、喜歡踢足球的6位女生中各選出1名進行其他方面的調查,求女生不全被選中的概率.下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 

 

 

 

 

(參考公式:其中.)

【解析】第一問利用數(shù)據(jù)寫出列聯(lián)表

第二問利用公式計算的得到結論。

第三問中,從6位女生中選出喜歡打籃球、喜歡打乒乓球、喜歡踢足球的各1名,其一切可能的結果組成的基本事件如下:

 ,

基本事件的總數(shù)為8

表示“不全被選中”這一事件,則其對立事件表示“全被選中”這一事件,由于 2個基本事件由對立事件的概率公式得

解:(1) 列聯(lián)表補充如下:

 

 

喜愛打羽毛球

不喜愛打羽毛球

合計

男生

20

25

女生

10

15

25

合計

30

20

50

(2)∵

∴有99.5%的把握認為喜愛打籃球與性別有關

(3)從6位女生中選出喜歡打籃球、喜歡打乒乓球、喜歡踢足球的各1名,其一切可能的結果組成的基本事件如下:

, ,

基本事件的總數(shù)為8,

表示“不全被選中”這一事件,則其對立事件表示“全被選中”這一事件,由于 2個基本事件由對立事件的概率公式得.

 

查看答案和解析>>

為了了解禿頂與患心臟病是否有關,某校學生隨機調查了醫(yī)院中因患心臟病而住院45名男性病人;另外不是因患心臟病而住院55名男性病人,得到相應的2×2列聯(lián)表如下圖:

(1)根據(jù)2×2列聯(lián)表補全相應的等高條形圖(用陰影表示);(2)根據(jù)列聯(lián)表的獨立性檢驗,能否在犯錯誤的概率不超過0.01的前提下認為禿頂與患心臟病有關?

查看答案和解析>>

(08年十校聯(lián)考) (14分) 已知二次函數(shù)同時滿足:⑴不等式的解集有且只有一個元素;⑵在定義域內存在,使得不等式成立。設數(shù)列的前

(1)求數(shù)列的通項公式;

(2)設

(3)設各項均不為零的數(shù)列中,所有滿足這個數(shù)列的變號數(shù)。另

查看答案和解析>>

某部門為了了解青年人喜歡戶外運動是否與性別有關,運用2×2列聯(lián)表進行獨立性檢驗,經(jīng)計算K2=7.069,則所得到的統(tǒng)計學結論為:有( 。┌盐照J為“喜歡戶外運動與性別有關”.
附:(獨立性檢驗臨界值表)
P(K2≥k0)  0.05 0.025 0.010 0.005 0.001
k0  3.841 5.024 6.636 7.879 10.828
A、0.1%B、1%
C、99%D、99.9%

查看答案和解析>>

電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調查。下面是根據(jù)調查結果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖;

將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”。

  (Ⅰ)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否認為“體育迷”與性別

有關?

   (Ⅱ)將上述調查所得到的頻率視為概率,F(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽

樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X。若每次抽取的結果是相互獨立的,求X的分布列,期望和方差。

附:

 

查看答案和解析>>


同步練習冊答案