(Ⅱ)當(dāng)a=1時(shí).若設(shè)數(shù)列{bn}的前n項(xiàng)和Tn.n∈N*.證明Tn<2. 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=a(a≠3),,設(shè),n∈N*
(1)求證:數(shù)列{bn}是等比數(shù)列;
(2)若an+1≥an,n∈N*,求實(shí)數(shù)a的最小值;
(3)當(dāng)a=4時(shí),給出一個(gè)新數(shù)列{en},其中,設(shè)這個(gè)新數(shù)列的前n項(xiàng)和為Cn,若Cn可以寫成tp(t,p∈N*且t>1,p>1)的形式,則稱Cn為“指數(shù)型和”.問{Cn}中的項(xiàng)是否存在“指數(shù)型和”,若存在,求出所有“指數(shù)型和”;若不存在,請(qǐng)說明理由.

查看答案和解析>>

等差數(shù)列{a}是遞增數(shù)列,前n項(xiàng)和為Sn,且a1,a2,a5成等比數(shù)列,S5=a32
(1)求通項(xiàng)an
(2)令bn=
1
2
(
an+1
an
+
an
an+1
)
,設(shè)Tn=b1+b2+…+bn-n,若M>Tn>m對(duì)一切正整數(shù)n恒成立,求實(shí)數(shù)M、m的取值范圍;
(3)試構(gòu)造一個(gè)函數(shù)g(x),使f(n)=a1g(1)+a2g(2)+…+ang(n)<
1
3
(n∈N+)
恒成立,且對(duì)任意的m∈(
1
4
,
1
3
)
,均存在正整數(shù)N,使得當(dāng)n>N時(shí),f(n)>m.

查看答案和解析>>

等差數(shù)列{a}是遞增數(shù)列,前n項(xiàng)和為Sn,且a1,a2,a5成等比數(shù)列,
(1)求通項(xiàng)an;
(2)令bn=,設(shè)Tn=b1+b2+…+bn-n,若M>Tn>m對(duì)一切正整數(shù)n恒成立,求實(shí)數(shù)M、m的取值范圍;
(3)試構(gòu)造一個(gè)函數(shù)g(x),使恒成立,且對(duì)任意的,均存在正整數(shù)N,使得當(dāng)n>N時(shí),f(n)>m.

查看答案和解析>>

(2010•濰坊三模)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)一切n∈N,Sn=n2+
1
2
an

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bnqan(λ,q為常數(shù),q>0且q≠1),cn=(b1+b2+…+bn)+n+3,當(dāng)數(shù)列{cn}為等比數(shù)列時(shí),求實(shí)數(shù)對(duì)(λ,q)的值;
(3)若不等式(1-
1
a1
)(1-
1
a2
)…(1-
1
an
)
an+1
<a-
3
2a
對(duì)一切n∈N*都成立,求a的取值范圍.

查看答案和解析>>

(2013•寶山區(qū)二模)已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=a(a≠3),an+1=Sn+3n,設(shè)bn=Sn-3n,n∈N*
(1)求證:數(shù)列{bn}是等比數(shù)列;
(2)若an+1≥an,n∈N*,求實(shí)數(shù)a的最小值;
(3)當(dāng)a=4時(shí),給出一個(gè)新數(shù)列{en},其中en=
3 , n=1
bn , n≥2
,設(shè)這個(gè)新數(shù)列的前n項(xiàng)和為Cn,若Cn可以寫成tp(t,p∈N*且t>1,p>1)的形式,則稱Cn為“指數(shù)型和”.問{Cn}中的項(xiàng)是否存在“指數(shù)型和”,若存在,求出所有“指數(shù)型和”;若不存在,請(qǐng)說明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案