如圖.在直三棱柱中... (1) 下圖給出了該直三棱柱三視圖中的主視圖.請據(jù)此畫出它的左視圖和俯視圖, 查看更多

 

題目列表(包括答案和解析)

如圖,在直四棱柱(側(cè)棱與底面垂直的四棱柱)ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC,給出以下結(jié)論:
(1)異面直線A1B1與CD1所成的角為45°;
(2)D1C⊥AC1
(3)在棱DC上存在一點(diǎn)E,使D1E∥平面A1BD,這個點(diǎn)為DC的中點(diǎn);
(4)在棱AA1上不存在點(diǎn)F,使三棱錐F-BCD的體積為直四棱柱體積的
1
5

其中正確的個數(shù)有(  )

查看答案和解析>>

如圖,在直四棱柱(側(cè)棱與底面垂直的四棱柱)ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC,給出以下結(jié)論:
(1)異面直線A1B1與CD1所成的角為45°;
(2)D1C⊥AC1;
(3)在棱DC上存在一點(diǎn)E,使D1E∥平面A1BD,這個點(diǎn)為DC的中點(diǎn);
(4)在棱AA1上不存在點(diǎn)F,使三棱錐F-BCD的體積為直四棱柱體積的
其中正確的個數(shù)有( )

A.1
B.2
C.3
D.4

查看答案和解析>>

如圖,在直四棱柱(側(cè)棱與底面垂直的四棱柱)ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC,給出以下結(jié)論:
(1)異面直線A1B1與CD1所成的角為45°;
(2)D1C⊥AC1;
(3)在棱DC上存在一點(diǎn)E,使D1E∥平面A1BD,這個點(diǎn)為DC的中點(diǎn);
(4)在棱AA1上不存在點(diǎn)F,使三棱錐F-BCD的體積為直四棱柱體積的數(shù)學(xué)公式
其中正確的個數(shù)有


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4

查看答案和解析>>

一、填空題:(5’×11=55’)

題號

1

2

3

4

5

6

答案

0

(1,2)

2

題號

7

8

9

10

11

 

答案

4

8.3

②、③

 

二、選擇題:(4’×4=16’)

題號

12

13

14

15

答案

A

C

B

<input id="u2fuh"><menuitem id="u2fuh"></menuitem></input>
<wbr id="u2fuh"></wbr>

20090116

三、解答題:(12’+14’+15’+16’+22’=79’)

16.解:由條件,可得,故左焦點(diǎn)的坐標(biāo)為

設(shè)為橢圓上的動點(diǎn),由于橢圓方程為,故

因?yàn)?sub>,所以

,

由二次函數(shù)性質(zhì)可知,當(dāng)時,取得最小值4.

所以,的模的最小值為2,此時點(diǎn)坐標(biāo)為

17.解:(1)當(dāng)時,

當(dāng)時,

當(dāng)時,;(不單獨(dú)分析時的情況不扣分)

當(dāng)時,

(2)由(1)知:當(dāng)時,集合中的元素的個數(shù)無限;

當(dāng)時,集合中的元素的個數(shù)有限,此時集合為有限集.

因?yàn)?sub>,當(dāng)且僅當(dāng)時取等號,

所以當(dāng)時,集合的元素個數(shù)最少.

此時,故集合

18.(本題滿分15分,1小題6分,第2小題9

解:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (2)解:如圖所示.由,則

所以,四棱錐的體積為

19.解:(1)根據(jù)三條規(guī)律,可知該函數(shù)為周期函數(shù),且周期為12.

由此可得,;

由規(guī)律②可知,,

又當(dāng)時,

所以,,由條件是正整數(shù),故取

    綜上可得,符合條件.

(2) 解法一:由條件,,可得

,

,

因?yàn)?sub>,,所以當(dāng)時,,

,即一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”.

解法二:列表,用計(jì)算器可算得

月份

6

7

8

9

10

11

人數(shù)

383

463

499

482

416

319

故一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”.

20.解:(1)依條件得: 則無窮等比數(shù)列各項(xiàng)的和為:

    

  (2)解法一:設(shè)此子數(shù)列的首項(xiàng)為,公比為,由條件得:,

,即    

 則 .

所以,滿足條件的無窮等比子數(shù)列存在且唯一,它的首項(xiàng)、公比均為,

其通項(xiàng)公式為,.

解法二:由條件,可設(shè)此子數(shù)列的首項(xiàng)為,公比為

………… ①

又若,則對每一

都有………… ②

從①、②得;

;

因而滿足條件的無窮等比子數(shù)列存在且唯一,此子數(shù)列是首項(xiàng)、公比均為無窮等比子

數(shù)列,通項(xiàng)公式為

(3)以下給出若干解答供參考,評分方法參考本小題閱卷說明:

問題一:是否存在數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們各項(xiàng)的和互為倒數(shù)?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

解:假設(shè)存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使它們的各項(xiàng)和之積為1。設(shè)這兩個子數(shù)列的首項(xiàng)、公比分別為,其中,則

因?yàn)榈仁阶筮吇驗(yàn)榕紨?shù),或?yàn)橐粋分?jǐn)?shù),而等式右邊為兩個奇數(shù)的乘積,還是一個奇數(shù)。故等式不可能成立。所以這樣的兩個子數(shù)列不存在。

【以上解答屬于層級3,可得設(shè)計(jì)分4分,解答分6分】

問題二:是否存在數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們各項(xiàng)的和相等?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

解:假設(shè)存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使它們的各項(xiàng)和相等。設(shè)這兩個子數(shù)列的首項(xiàng)、公比分別為,其中,則

………… ①

,則①,矛盾;若,則①

,矛盾;故必有,不妨設(shè),則

………… ②

1當(dāng)時,②,等式左邊是偶數(shù),

右邊是奇數(shù),矛盾;

2當(dāng)時,②

,

兩個等式的左、右端的奇偶性均矛盾;

綜合可得,不存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們的各項(xiàng)和相等。

【以上解答屬于層級4,可得設(shè)計(jì)分5分,解答分7分】

問題三:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項(xiàng)和等于另一個數(shù)列的各項(xiàng)和的倍?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

解:假設(shè)存在滿足條件的原數(shù)列的兩個不同的無窮等比子數(shù)列。設(shè)這兩個子數(shù)列的首項(xiàng)、公比分別為,其中,則

,

顯然當(dāng)時,上述等式成立。例如取,得:

第一個子數(shù)列:,各項(xiàng)和;第二個子數(shù)列:,

各項(xiàng)和,有,因而存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項(xiàng)和等于另一個數(shù)列的各項(xiàng)和的倍。

【以上解答屬層級3,可得設(shè)計(jì)分4分,解答分6分.若進(jìn)一步分析完備性,可提高一個層級評分】

問題四:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項(xiàng)和等于另一個數(shù)列的各項(xiàng)和的倍?并說明理由.解(略):存在。

問題五:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項(xiàng)和等于另一個數(shù)列的各項(xiàng)和的倍?并說明理由.解(略):不存在.

【以上問題四、問題五等都屬于層級4的問題設(shè)計(jì),可得設(shè)計(jì)分5分。解答分最高7分】

 


同步練習(xí)冊答案
<dl id="u2fuh"><span id="u2fuh"><pre id="u2fuh"></pre></span></dl>
<kbd id="u2fuh"><strike id="u2fuh"></strike></kbd>
<ins id="u2fuh"><small id="u2fuh"></small></ins>
<ins id="u2fuh"><label id="u2fuh"></label></ins><nobr id="u2fuh"><span id="u2fuh"></span></nobr>
<dl id="u2fuh"><span id="u2fuh"><delect id="u2fuh"></delect></span></dl>