已知無窮等比數(shù)列的首項.公比均為. 查看更多

 

題目列表(包括答案和解析)

已知無窮等比數(shù)列{an}的首項、公比均為

(1)試求無窮等比子數(shù)列{a3k-1}(k∈N*)各項的和;

(2)是否存在數(shù)列{an}的一個無窮等比子數(shù)列,使得它各項的和為?若存在,求出滿足條件的子數(shù)列的通項公式;若不存在,請說明理由;

(3)試設(shè)計一個數(shù)學問題,研究:是否存在數(shù)列{an}的兩個不同的無窮等比子數(shù)列,使得其各項和之間滿足某種關(guān)系.請寫出你的問題以及問題的研究過程和研究結(jié)論.

查看答案和解析>>

已知{an}是各項均為正數(shù)的等差數(shù)列,lga1、lga2、lga4成等差數(shù)列。又,n=1,2,3,…,
(Ⅰ)證明{bn}為等比數(shù)列;
(Ⅱ)如果無窮等比數(shù)列{bn}各項的和S=,求數(shù)列{an}的首項a1和公差d。
(注:無窮數(shù)列各項的和即當n→∞時數(shù)列前項和的極限)

查看答案和解析>>

已知{an}是各項均為正數(shù)的等差數(shù)列,lga1、lga2、lga4成等差數(shù)列,又bn=,n=1,2,3….

(Ⅰ)證明{bn}為等比數(shù)列;

(Ⅱ)如果無窮等比數(shù)列{bn}各項的和S=,求數(shù)列{an}的首項a1和公差d.

(注:無窮數(shù)列各項的和即當n→∞時數(shù)列前n項和的極限)

查看答案和解析>>

已知{an}是各項均為正數(shù)的等差數(shù)列,lga1、lga2、lga4成等差數(shù)列,又bn=,n=1,2,3….

(Ⅰ)證明{bn}為等比數(shù)列;

(Ⅱ)如果無窮等比數(shù)列{bn}各項的和S=,求數(shù)列{an}的首項a1和公差d.

(注:無窮數(shù)列各項的和即當n→∞時數(shù)列前n項和的極限)

查看答案和解析>>

(18)已知{an}是各項均為正數(shù)的等差數(shù)列,lga1、lga2、lga4成等差數(shù)列,又bn=,n=1,2,3….

(Ⅰ)證明{bn}為等比數(shù)列;

(Ⅱ)如果無窮等比數(shù)列{bn}各項的和S=,求數(shù)列{an}的首項a1和公差d.

(注:無窮數(shù)列各項的和即當n→∞時數(shù)列前n項和的極限)

查看答案和解析>>

一、填空題:(5’×11=55’)

題號

1

2

3

4

5

6

答案

0

(1,2)

2

題號

7

8

9

10

11

 

答案

4

8.3

②、③

 

二、選擇題:(4’×4=16’)

題號

12

13

14

          20090116

          答案

          A

          C

          B

          B

          三、解答題:(12’+14’+15’+16’+22’=79’)

          16.(理)解:設(shè)為橢圓上的動點,由于橢圓方程為,故

          因為,所以

              推出

          依題意可知,當時,取得最小值.而,

          故有,解得

          又點在橢圓的長軸上,即.故實數(shù)的取值范圍是

          17.解:(1)當時,

          時,

          時,;(不單獨分析時的情況不扣分)

          時,

          (2)由(1)知:當時,集合中的元素的個數(shù)無限;

          時,集合中的元素的個數(shù)有限,此時集合為有限集.

          因為,當且僅當時取等號,

          所以當時,集合的元素個數(shù)最少.

          此時,故集合

          18.(本題滿分15分,1小題7分,第2小題8

          解:(1)如圖,建立空間直角坐標系.不妨設(shè)

          依題意,可得點的坐標,,

              于是,,

             由,則異面直線所成角的

          大小為

          (2)解:連結(jié). 由,

          的中點,得;

          ,,得

          ,因此

          由直三棱柱的體積為.可得

          所以,四棱錐的體積為

          19.解:(1)根據(jù)三條規(guī)律,可知該函數(shù)為周期函數(shù),且周期為12.

          由此可得,;

          由規(guī)律②可知,,

          又當時,,

          所以,,由條件是正整數(shù),故取

              綜上可得,符合條件.

          (2) 解法一:由條件,,可得

          ,

          ,

          ,

          因為,,所以當時,,

          ,即一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”.

          解法二:列表,用計算器可算得

          月份

          6

          7

          8

          9

          10

          11

          人數(shù)

          383

          463

          499

          482

          416

          319

          故一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”.

          20.解:(1)依條件得: 則無窮等比數(shù)列各項的和為:

              

            (2)解法一:設(shè)此子數(shù)列的首項為,公比為,由條件得:,

          ,即    

           則 .

          所以,滿足條件的無窮等比子數(shù)列存在且唯一,它的首項、公比均為,

          其通項公式為,.

          解法二:由條件,可設(shè)此子數(shù)列的首項為,公比為

          ………… ①

          又若,則對每一

          都有………… ②

          從①、②得

          ;

          因而滿足條件的無窮等比子數(shù)列存在且唯一,此子數(shù)列是首項、公比均為無窮等比子

          數(shù)列,通項公式為

          (3)以下給出若干解答供參考,評分方法參考本小題閱卷說明:

          問題一:是否存在數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們各項的和互為倒數(shù)?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

          解:假設(shè)存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使它們的各項和之積為1。設(shè)這兩個子數(shù)列的首項、公比分別為,其中,則

          因為等式左邊或為偶數(shù),或為一個分數(shù),而等式右邊為兩個奇數(shù)的乘積,還是一個奇數(shù)。故等式不可能成立。所以這樣的兩個子數(shù)列不存在。

          【以上解答屬于層級3,可得設(shè)計分4分,解答分6分】

          問題二:是否存在數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們各項的和相等?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

          解:假設(shè)存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使它們的各項和相等。設(shè)這兩個子數(shù)列的首項、公比分別為,其中,則

          ………… ①

          ,則①,矛盾;若,則①

          ,矛盾;故必有,不妨設(shè),則

          ………… ②

          1時,②,等式左邊是偶數(shù),

          右邊是奇數(shù),矛盾;

          2時,②

          ,

          兩個等式的左、右端的奇偶性均矛盾;

          綜合可得,不存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們的各項和相等。

          【以上解答屬于層級4,可得設(shè)計分5分,解答分7分】

          問題三:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

          解:假設(shè)存在滿足條件的原數(shù)列的兩個不同的無窮等比子數(shù)列。設(shè)這兩個子數(shù)列的首項、公比分別為,其中,則

          ,

          顯然當時,上述等式成立。例如取,,得:

          第一個子數(shù)列:,各項和;第二個子數(shù)列:,

          各項和,有,因而存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍。

          【以上解答屬層級3,可得設(shè)計分4分,解答分6分.若進一步分析完備性,可提高一個層級評分】

          問題四:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍?并說明理由.解(略):存在。

          問題五:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍?并說明理由.解(略):不存在.

          【以上問題四、問題五等都屬于層級4的問題設(shè)計,可得設(shè)計分5分。解答分最高7分】

           


          同步練習冊答案