題目列表(包括答案和解析)
已知數(shù)列滿足,
(1)求證:數(shù)列是等比數(shù)列;
(2)求數(shù)列的通項(xiàng)和前n項(xiàng)和.
【解析】第一問中,利用,得到從而得證
第二問中,利用∴ ∴分組求和法得到結(jié)論。
解:(1)由題得 ………4分
……………………5分
∴數(shù)列是以2為公比,2為首項(xiàng)的等比數(shù)列; ……………………6分
(2)∴ ……………………8分
∴ ……………………9分
∴
如圖,在直三棱柱中,底面為等腰直角三角形,,為棱上一點(diǎn),且平面平面.
(Ⅰ)求證:點(diǎn)為棱的中點(diǎn);
(Ⅱ)判斷四棱錐和的體積是否相等,并證明。
【解析】本試題主要考查了立體幾何中的體積問題的運(yùn)用。第一問中,
易知,面。由此知:從而有又點(diǎn)是的中點(diǎn),所以,所以點(diǎn)為棱的中點(diǎn).
(2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D為BB1中點(diǎn),可以得證。
(1)過點(diǎn)作于點(diǎn),取的中點(diǎn),連。面面且相交于,面內(nèi)的直線,面!3分
又面面且相交于,且為等腰三角形,易知,面。由此知:,從而有共面,又易知面,故有從而有又點(diǎn)是的中點(diǎn),所以,所以點(diǎn)為棱的中點(diǎn). …6分
(2)相等.ABC-A1B1C1為直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,
∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D為BB1中點(diǎn),∴VA1-B1C1CD=VC-A1ABD
已知函數(shù).()
(1)若在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.
【解析】第一問中,首先利用在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進(jìn)而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.然后求解得到。
解:(1)在區(qū)間上單調(diào)遞增,
則在區(qū)間上恒成立. …………3分
即,而當(dāng)時,,故. …………5分
所以. …………6分
(2)令,定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859562664899842_ST.files/image016.png">.
在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.
∵ …………9分
① 若,令,得極值點(diǎn),,
當(dāng),即時,在(,+∞)上有,此時在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;
當(dāng),即時,同理可知,在區(qū)間上遞增,
有,也不合題意; …………11分
② 若,則有,此時在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);
要使在此區(qū)間上恒成立,只須滿足,
由此求得的范圍是. …………13分
綜合①②可知,當(dāng)時,函數(shù)的圖象恒在直線下方.
在中,是三角形的三內(nèi)角,是三內(nèi)角對應(yīng)的三邊,已知成等差數(shù)列,成等比數(shù)列
(Ⅰ)求角的大;
(Ⅱ)若,求的值.
【解析】第一問中利用依題意且,故
第二問中,由題意又由余弦定理知
,得到,所以,從而得到結(jié)論。
(1)依題意且,故……………………6分
(2)由題意又由余弦定理知
…………………………9分
即 故
代入得
在數(shù)列中,,當(dāng)時,
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和.
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的求和 綜合運(yùn)用。第一問中 ,利用,得到且,故故為以1為首項(xiàng),公差為2的等差數(shù)列. 從而
第二問中,
由及知,從而可得且
故為以1為首項(xiàng),公差為2的等差數(shù)列.
從而 ……………………6分
(2)……………………9分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com