某校高二年級舉行一次演講賽共有10位同學參賽.其中一班有3位.二班有2位.其它班有5位.若采用抽簽的方式確定他們的演講順序.則一班有3位同學恰好被排在一起.而二班的2位同學沒有被排在一起的概率為: 查看更多

 

題目列表(包括答案和解析)

某校高二年級舉行一次演講賽共有10位同學參賽,其中一班有3位,二班有2位,其它班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學恰好被排在一起(指演講序號相連),而二班的2位同學沒有被排在一起的概率為:

A.             B.             C.              D.

查看答案和解析>>

某校高三年級舉行一次演講賽共有10位同學參賽,其中一班有3位,二班有2位,其它班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學恰好被排在一起(指演講序號相連),而二班的2位同學沒有被排在一起的概率為:( 。
A、
1
10
B、
1
20
C、
1
40
D、
1
120

查看答案和解析>>

某校高三年級舉行一次演講賽共有10位同學參賽,其中一班有3位,二班有2位,其他班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學恰好被排在一起(指演講序號相連),而二班的2位同學沒有被排在一起的概率為(    )

A.                 B.                C.               D.

查看答案和解析>>

某校高三年級舉行一次演講賽共有10位同學參賽,其中一班有3位,二班有2位,其他班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學恰好被排在一起(指演講序號相連),而二班的2位同學沒有被排在一起的概率為(  )

A.                                         B.

C.                                        D.

查看答案和解析>>

某校高三年級舉行一次演講賽共有10位同學參賽,其中一班有3位,二班有2位,其它班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學恰好被排在一起(指演講序號相連),而二班的2位同學沒有被排在一起的概率為           (  )

     A.           B.            C.                D.

查看答案和解析>>


同步練習冊答案