6. 在區(qū)間[-1.3]上的最大值是 查看更多

 

題目列表(包括答案和解析)

(08年福州質(zhì)檢理)在區(qū)間[-1,3]上的最大值是                   (    )

       A.-2                     B.0                        C.2                        D.

查看答案和解析>>

函數(shù)在閉區(qū)間[-3,0]上的最大值、最小值分別是( ) 

A.1,-1           B. 3,-17           C. 1,-17         D.9,-19

 

查看答案和解析>>

函數(shù)在閉區(qū)間[-3,0]上的最大值、最小值分別是( ) 

A.1,-1 B. 3,-17 C. 1,-17 D.9,-19 

查看答案和解析>>

函數(shù)在閉區(qū)間[-3,0]上的最大值、最小值分別是( ) 
A.1,-1B. 3,-17C. 1,-17D.9,-19

查看答案和解析>>

函數(shù)f(x)=x3-3x+1在閉區(qū)間[-3,0]上的最大值、最小值分別是                 (  )

A  1,-1           B  3,-17               C  1,-17       D  9,-19

 

查看答案和解析>>

 

第Ⅰ卷(選擇題  共60分)

一、選擇題

      20080422

      第Ⅱ卷(非選擇題  共90分)

      二、填空題

      13.2    14.3   15.   16.①③④

      三、解答題

      17.解:(1)由正弦定理得,…………………………………….….3分

         ,,因此。…….6分

      (2)的面積,,………..8分

      ,所以由余弦定理得….10分

      !.12分

      文本框:  18.方法一:                

      (1)證明:連結(jié)BD,

      ∵D分別是AC的中點(diǎn),PA=PC=

      ∴PD⊥AC,

      ∵AC=2,AB=,BC=

      ∴AB2+BC2=AC2

      ∴∠ABC=90°,即AB⊥BC.…………2分

      ∴BD=

      ∵PD2=PA2―AD2=3,PB

      ∴PD2+BD2=PB2,

      ∴PD⊥BD,

      ∵ACBD=D

      ∴PD⊥平面ABC.…………………………4分

      (2)解:取AB的中點(diǎn)E,連結(jié)DE、PE,由E為AB的中點(diǎn)知DE//BC,

      ∵AB⊥BC,

      ∴AB⊥DE,

      ∵DE是直線PE的底面ABC上的射景

      ∴PE⊥AB

      ∴∠PED是二面角P―AB―C的平面角,……………………6分

      在△PED中,DE=∠=90°,

      ∴tan∠PDE=

      ∴二面角P―AB―C的大小是

      (3)解:設(shè)點(diǎn)E到平面PBC的距離為h.

      ∵VP―EBC=VE―PBC,

      ……………………10分

      在△PBC中,PB=PC=,BC=

      而PD=

      ∴點(diǎn)E到平面PBC的距離為……………………12分

      方法二:

      (1)同方法一:

      (2)解:解:取AB的中點(diǎn)E,連結(jié)DE、PE,

      過點(diǎn)D作AB的平行線交BC于點(diǎn)F,以D為

      <dd id="au0hb"><tbody id="au0hb"></tbody></dd>

      DP為z軸,建立如圖所示的空間直角坐標(biāo)系.

      則D(0,0,0),P(0,0,),

      E(),B=(

      設(shè)上平面PAB的一個法向量,

      則由

      這時,……………………6分

      顯然,是平面ABC的一個法向量.

      ∴二面角P―AB―C的大小是……………………8分

      (3)解:

      設(shè)平面PBC的一個法向量,

      是平面PBC的一個法向量……………………10分

      ∴點(diǎn)E到平面PBC的距離為………………12分

      19.解:

      20.解(1)由已知,拋物線,焦點(diǎn)F的坐標(biāo)為F(0,1)………………1分

      當(dāng)l與y軸重合時,顯然符合條件,此時……………………3分

      當(dāng)l不與y軸重合時,要使拋物線的焦點(diǎn)F與原點(diǎn)O到直線l的距離相等,當(dāng)且僅當(dāng)直線l通過點(diǎn)()設(shè)l的斜率為k,則直線l的方程為

      由已知可得………5分

      解得無意義.

      因此,只有時,拋物線的焦點(diǎn)F與原點(diǎn)O到直線l的距離相等.……7分

      (2)由已知可設(shè)直線l的方程為……………………8分

      則AB所在直線為……………………9分

      代入拋物線方程………………①

      的中點(diǎn)為

      代入直線l的方程得:………………10分

      又∵對于①式有:

      解得m>-1,

      l在y軸上截距的取值范圍為(3,+)……………………12分

      21.解:(1)在………………1分

      當(dāng)兩式相減得:

      整理得:……………………3分

      當(dāng)時,,滿足上式,

      (2)由(1)知

      ………………8分

      ……………………………………………12分

      22.解:(1)…………………………1分

      是R上的增函數(shù),故在R上恒成立,

      在R上恒成立,……………………2分

      …………3分

      故函數(shù)上單調(diào)遞減,在(-1,1)上單調(diào)遞增,在(1,+)上單調(diào)遞減!5分

      ∴當(dāng)

      的最小值………………6分

      亦是R上的增函數(shù)。

      故知a的取值范圍是……………………7分

      (2)……………………8分

      ①當(dāng)a=0時,上單調(diào)遞增;…………10分

      可知

      ②當(dāng)

      即函數(shù)上單調(diào)遞增;………………12分

      ③當(dāng)時,有

      即函數(shù)上單調(diào)遞增!14分

       


      同步練習(xí)冊答案
      <bdo id="au0hb"></bdo>
      <dl id="au0hb"><pre id="au0hb"></pre></dl>