7.兩個(gè)非零向量a.b互相垂直.給出下列各式: 查看更多

 

題目列表(包括答案和解析)

兩個(gè)非零向量a,b互相垂直,給出下列各式:
①a•b=0;
②a+b=a-b;
③|a+b|=|a-b|;
④|a|2+|b|2=(a+b)2
⑤(a+b)•(a-b)=0.
其中正確的式子有( 。
A、2個(gè)B、3個(gè)C、4個(gè)D、5個(gè)

查看答案和解析>>

兩個(gè)非零向量
a
,
b
互相垂直,給出下列各式:
a
b
=0;
a
+
b
=
a
-
b
;
③|
a
+
b
|=|
a
-
b
|;
④|
a
|2+|
b
|2=(
a
+
b
2;
⑤(
a
+
b
)•(
a
-
b
)=0.
以上結(jié)論正確的是
①③④
①③④
(寫出所有正確結(jié)論的編號)

查看答案和解析>>

兩個(gè)非零向量a,b互相垂直,給出下列各式:
①a•b=0;
②a+b=a-b;
③|a+b|=|a-b|;
④|a|2+|b|2=(a+b)2;
⑤(a+b)•(a-b)=0.
其中正確的式子有


  1. A.
    2個(gè)
  2. B.
    3個(gè)
  3. C.
    4個(gè)
  4. D.
    5個(gè)

查看答案和解析>>

兩個(gè)非零向量a,b互相垂直,給出下列各式:

a·b=0;②a+b=a-b;③|a+b|=|a-b|;

④|a|2+|b|2=(a+b)2;⑤(a+b)·(a-b)=0.

以上結(jié)論正確的是______________(寫出所有正確結(jié)論的編號).

 

查看答案和解析>>

兩個(gè)非零向量a,b互相垂直,給出下列各式:

①a·b=0;②a+b=a-b;③|a+b|=|a-b|;

④|a|2+|b|2=(a+b)2;⑤(a+b)·(a-b)=0.

以上結(jié)論正確的是______________(寫出所有正確結(jié)論的編號)

 

查看答案和解析>>

1.A 2.B 3.B 4.D 5.(理)C。ㄎ模〢 6.B 7.A 8.B 9.A 10.B 11.(理)A。ㄎ模〤 12.B

13.(理) (文)25,60,15 14.-672 15.2.5小時(shí) 16.①,④

17.設(shè)fx)的二次項(xiàng)系數(shù)為m,其圖象上兩點(diǎn)為(1-x,)、B(1+x,

因?yàn)?sub>,所以,

x的任意性得fx)的圖象關(guān)于直線x=1對稱,

m>0,則x≥1時(shí),fx)是增函數(shù),若m<0,則x≥1時(shí),fx)是減函數(shù).

  ∵ ,, ,

  ∴ 當(dāng)時(shí),

  ∵ , ∴ 

  當(dāng)時(shí),同理可得

  綜上:的解集是當(dāng)時(shí),為;

  當(dāng)時(shí),為,或

18.(理)(1)設(shè)甲隊(duì)在第五場比賽后獲得冠軍為事件M,則第五場比賽甲隊(duì)獲勝,前四場比賽甲隊(duì)獲勝三場,依題意得

 。2)設(shè)甲隊(duì)獲得冠軍為事件E,則E包含第四、第五、第六、第七場獲得冠軍四種情況,且它們被彼此互斥.

  ∴ 

 。ㄎ模┰O(shè)甲袋內(nèi)恰好有4個(gè)白球?yàn)槭录?i>B,則B包含三種情況.

 、偌状腥2個(gè)白球,且乙袋中取2個(gè)白球,②甲袋中取1個(gè)白球,1個(gè)黑球,且乙袋中取1個(gè)白球,1個(gè)黑球,③甲、乙兩袋中各取2個(gè)黑球.

  ∴ 

19.(1)取中點(diǎn)E,連結(jié)ME、,∴ ,MCEC.∴ MC.∴ ,M,CN四點(diǎn)共面.

 。2)連結(jié)BD,則BD在平面ABCD內(nèi)的射影.

  ∵ , ∴ Rt△CDM~Rt△BCD,∠DCM=∠CBD

  ∴ ∠CBD+∠BCM=90°. ∴ MCBD.∴ 

 。3)連結(jié),由是正方形,知

  ∵ MC, ∴ ⊥平面

  ∴ 平面⊥平面

 。4)∠與平面所成的角且等于45°.

20.(1).∵ x≥1. ∴ 

  當(dāng)x≥1時(shí),是增函數(shù),其最小值為

  ∴ a<0(a=0時(shí)也符合題意). ∴ a≤0.

 。2),即27-6a-3=0, ∴ a=4.

  ∴ 有極大值點(diǎn),極小值點(diǎn)

  此時(shí)fx)在,上時(shí)減函數(shù),在,+上是增函數(shù).

  ∴ fx)在上的最小值是,最大值是,(因).

21.(1)∵斜率k存在,不妨設(shè)k>0,求出M,2).直線MA方程為,直線MB方程為

  分別與橢圓方程聯(lián)立,可解出

  ∴ . ∴ (定值).

 。2)設(shè)直線AB方程為,與聯(lián)立,消去y

  由>0得-4<m<4,且m≠0,點(diǎn)MAB的距離為

  設(shè)△AMB的面積為S. ∴ 

  當(dāng)時(shí),得

22.(1)∵ ,a,,

  ∴   ∴   ∴  ∴ 

  ∴ a=2或a=3(a=3時(shí)不合題意,舍去). ∴a=2.

(2),,由可得 

∴ .∴ b=5

 。3)由(2)知,, ∴ 

  ∴ . ∴ ,

  ∵ ,

  當(dāng)n≥3時(shí),

  

  

  

  ∴ . 綜上得 

 


同步練習(xí)冊答案