題目列表(包括答案和解析)
(本題滿分12分)
在平面直角坐標(biāo)系中,已知A1(-3,0),A2(3,0),P(x,y),M(,0),若實數(shù)λ使向量,λ,滿足λ2·()2=·。
(1)求點P的軌跡方程,并判斷P點的軌跡是怎樣的曲線;
(2)當(dāng)λ=時,過點A1且斜率為1的直線與此時(1)中的曲線相交的另一點為B,能否在直線x=-9上找一點C,使ΔA1BC為正三角形(請說明理由)。
(本題滿分12分)
如圖,已知四棱錐P—ABCD,底面ABCD為菱形,PA平面ABCD,ABC=60O,E,F(xiàn)分別是BC,PC
的中點。H為PD上的動點,EH與平面PAD所成最大角的正切值為。
(1) 證明:AEPD;
(2) 求異面直線PB與AC所成的角的余弦值;
(3) 若AB=2,求三棱錐P—AEF的體積。
(本題滿分12分)已知某幾何體的直觀圖和三視圖如下圖所示, 其正視圖為矩形,左視圖為等腰直角三角形,俯視圖為直角梯形.
(Ⅰ)證明: ;
(Ⅱ)求二面角的余弦值;
(Ⅲ)為的中點,在線段上是否存在一點,使得∥平面,若存在,求出的長;若不存在,請說明理由.
(本題滿分12分)如圖,已知三棱錐A—BPC中,APPC.ACBC.M為AB中點.D為PB中點.且△PMB為正三角形.
(1)求證:DM//平面APC;
(2)求證:平面ABC平面APC;
(3)若BC=4,AB=20,求三棱錐D—BCM體積
(本題滿分12分)已知某幾何體的直觀圖和三視圖如下圖所示, 其正視圖為矩形,左視圖為等腰直角三角形,俯視圖為直角梯形.
(Ⅰ)證明: ;
(Ⅱ)求二面角的余弦值;
(Ⅲ)為的中點,在線段上是否存在一點,使得∥平面,若存在,求出的長;若不存在,請說明理由.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com