(A)函數(shù)一定是偶函數(shù) (B)函數(shù)一定是偶函數(shù) 查看更多

 

題目列表(包括答案和解析)

函數(shù)A>0,ω>0)在處取最大值,則           

       A.一定是奇函數(shù)                   B.一定是偶函數(shù)

       C.一定是奇函數(shù)     D.一定是偶函數(shù)

查看答案和解析>>

函數(shù)y=x-
1
x
(-1≤x≤1且x≠0)
 一定是( 。

查看答案和解析>>

函數(shù)f(x)是定義在區(qū)間[-10,10]上偶函數(shù),且f(3)<f(1).則下列各式一定成立的是( 。

查看答案和解析>>

(A>0,ω>0)在x=1處取最大值,則    (      )

A.一定是奇函數(shù)  B.一定是偶函數(shù)

C.一定是奇函數(shù)  D.一定是偶函數(shù)

查看答案和解析>>

(A>0,ω>0)在x=1處取最大值,則           (    )

A.一定是奇函數(shù)           B.一定是偶函數(shù)

C.一定是奇函數(shù)        D.一定是偶函數(shù)

查看答案和解析>>

一、             填空題(48分)

1、4 2、(理)20(文) 3、  4、  5、  6、7、(理)(文)4    8、6  9、 10、  11、 12、

二、             選擇題(16分)

13、B    14、B   15C   16、A

三、             解答題(86分)

17、(12分)(1,則……………………… 6分)

(2………………………………………(9分)

…………………………………………………………12分)

18、(12分)(1它是有一條側(cè)棱垂直于底面的四棱錐

 

 

 

 

…………………………………………………………6分)

(注:評(píng)分注意實(shí)線、虛線;垂直關(guān)系;長(zhǎng)度比例等)

2)由題意,,則,

需要3個(gè)這樣的幾何體可以拼成一個(gè)棱長(zhǎng)為6的正方體12分)

19、(14分)

(1)拋物線的焦點(diǎn)為(1,0……………………………………………………2分)

設(shè)橢圓方程為,則

∴橢圓方程為……………………………………………6分)

(2)設(shè),則

  ………………8分)

①     當(dāng)時(shí),,即時(shí),;

②     當(dāng)時(shí),,即時(shí),;

綜上,……………………………………14分)

(注:也可設(shè)解答,參照以上解答相應(yīng)評(píng)分)

20、(14分)

1)設(shè)當(dāng)天的旅游收入為L(zhǎng),由

……………………………(2分)

,知…………………………………………(4分)

,

即當(dāng)天的旅游收入是20萬(wàn)到60萬(wàn)。……………………………………………(7分)

(2)則每天的旅游收入上繳稅收后不低于220000

  )得

  )得;

………………………………………………………………………(11分)

代入可得

即每天游客應(yīng)不少于1540人。……………………………………………………(14分)

21、(16分)

(1)     ,得(4分)

(2)     ,得

,所以是不唯一的。…………………………………10分)

(3,,;

…………………………………………12分)

(文)………………………………………………………………………………16分)

(理)一般地,對(duì)任意復(fù)數(shù),有

證明:設(shè),

,

。…………………………………………………16分)

22、(18分)

1 ………………………………………………………………6分)

(2)由解得

解得…………………………………12分)

(3)     ,

,

當(dāng)時(shí),,

對(duì)于時(shí),,命題成立!14分)

以下用數(shù)學(xué)歸納法證明對(duì),且時(shí),都有成立

假設(shè)時(shí)命題成立,即,

那么時(shí),命題也成立。

存在滿足條件的區(qū)間。………………………………18分)

 


同步練習(xí)冊(cè)答案