如圖2:已知在RtABC中.ACB=90.點(diǎn)D在邊BC上.過點(diǎn)D作DE∥AC 查看更多

 

題目列表(包括答案和解析)

26、如圖甲,已知在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E.
(1)說明△ADC≌△CEB.
(2)說明AD+BE=DE.
(3)已知條件不變,將直線MN繞點(diǎn)C旋轉(zhuǎn)到圖乙的位置時(shí),若DE=3、AD=5.5,則BE=
2.5

查看答案和解析>>

數(shù)形結(jié)合作為一種數(shù)學(xué)思想方法,數(shù)形結(jié)合的應(yīng)用大致又可分為兩種情形:或者借助于數(shù)的精確性來闡明形的某些屬性,即“以數(shù)解形”;或者借助形的幾何直觀性來闡明數(shù)之間的某種關(guān)系,即“以形助數(shù)”.
如浙教版九上課本第109頁(yè)作業(yè)題第2題:如圖1,已知在△ABC中,∠ACB=90°,CD⊥AB,D為垂足.易證得兩個(gè)結(jié)論:(1)AC•BC=AB•CD   (2)AC2=AD•AB
(1)請(qǐng)你用數(shù)形結(jié)合的“以數(shù)解形”思想來解:如圖2,已知在△ABC中(AC>BC),∠ACB=90°,CD⊥AB,D為垂足,CM平分∠ACB,且BC、AC是方程x2-14x+48=0的兩個(gè)根,求AD、MD的長(zhǎng).
(2)請(qǐng)你用數(shù)形結(jié)合的“以形助數(shù)”思想來解:設(shè)a、b、c、d都是正數(shù),滿足a:b=c:d,且a最大.求證:a+d>b+c(提示:不訪設(shè)AB=a,CD=d,AC=b,BC=c,構(gòu)造圖1)
精英家教網(wǎng)

查看答案和解析>>

如圖甲,已知在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E.
(1)說明△ADC≌△CEB.
(2)說明AD+BE=DE.
(3)已知條件不變,將直線MN繞點(diǎn)C旋轉(zhuǎn)到圖乙的位置時(shí),若DE=3、AD=5.5,則BE=________.

查看答案和解析>>

數(shù)形結(jié)合作為一種數(shù)學(xué)思想方法,數(shù)形結(jié)合的應(yīng)用大致又可分為兩種情形:或者借助于數(shù)的精確性來闡明形的某些屬性,即 “以數(shù)解形”;或者借助形的幾何直觀性來闡明數(shù)之間的某種關(guān)系,即 “以形助數(shù)”。
如浙教版九上課本第109頁(yè)作業(yè)題第2題:如圖1,已知在△ABC中,∠ACB=90°,CD⊥AB,D為垂足。易證得兩個(gè)結(jié)論:
(1)AC·BC=AB·CD;
(2)AC2=AD·AB。

                         圖1                                                       圖2
(1)請(qǐng)你用數(shù)形結(jié)合的“以數(shù)解形”思想來解:如圖2,已知在△ABC中(AC>BC),∠ACB=90°,CD⊥AB,D為垂足,CM平分∠ACB,且BC、AC是方程x2-14x+48=0的兩個(gè)根,求AD、MD的長(zhǎng);
(2)請(qǐng)你用數(shù)形結(jié)合的“以形助數(shù)”思想來解: 設(shè)a、b、c、d都是正數(shù),滿足a:b=c:d,且a最大。求證:a+d>b+c(提示:不訪設(shè)AB=a,CD=d,AC=b,BC=c,構(gòu)造圖1)。

查看答案和解析>>

數(shù)形結(jié)合作為一種數(shù)學(xué)思想方法,數(shù)形結(jié)合的應(yīng)用大致又可分為兩種情形:或者借助于數(shù)的精確性來闡明形的某些屬性,即“以數(shù)解形”;或者借助形的幾何直觀性來闡明數(shù)之間的某種關(guān)系,即“以形助數(shù)”.
如浙教版九上課本第109頁(yè)作業(yè)題第2題:如圖1,已知在△ABC中,∠ACB=90°,CD⊥AB,D為垂足.易證得兩個(gè)結(jié)論:(1)AC•BC=AB•CD   (2)AC2=AD•AB
(1)請(qǐng)你用數(shù)形結(jié)合的“以數(shù)解形”思想來解:如圖2,已知在△ABC中(AC>BC),∠ACB=90°,CD⊥AB,D為垂足,CM平分∠ACB,且BC、AC是方程x2-14x+48=0的兩個(gè)根,求AD、MD的長(zhǎng).
(2)請(qǐng)你用數(shù)形結(jié)合的“以形助數(shù)”思想來解:設(shè)a、b、c、d都是正數(shù),滿足a:b=c:d,且a最大.求證:a+d>b+c(提示:不訪設(shè)AB=a,CD=d,AC=b,BC=c,構(gòu)造圖1)

查看答案和解析>>


同步練習(xí)冊(cè)答案