如圖2:在□ABCD中.A=1400. 直線BE交AD于點(diǎn)E.交CD的延長線于點(diǎn)F.且DE=DF. 查看更多

 

題目列表(包括答案和解析)

(2012•槐蔭區(qū)一模)(1)已知:如圖1,點(diǎn)A、C、D、B在同一條直線上,AC=BD,AE=BF,∠A=∠B.求證:∠E=∠F.

(2)已知:如圖2,在?ABCD中,AE平分∠DAB,交CD于點(diǎn)E.求證:DA=DE.

查看答案和解析>>

(2012•豐臺區(qū)二模)小杰遇到這樣一個(gè)問題:如圖1,在?ABCD中,AE⊥BC于點(diǎn)E,AF⊥CD于點(diǎn)F,連接EF,△AEF的三條高線交于點(diǎn)H,如果AC=4,EF=3,求AH的長.
小杰是這樣思考的:要想解決這個(gè)問題,應(yīng)想辦法將題目中的已知線段與所求線段盡可能集中到同一個(gè)三角形中.他先后嘗試了翻折、旋轉(zhuǎn)、平移的方法,發(fā)現(xiàn)可以通過將△AEH平移至△GCF的位置(如圖2),可以解決這個(gè)問題.
請你參考小杰同學(xué)的思路回答:
(1)圖2中AH的長等于
7
7

(2)如果AC=a,EF=b,那么AH的長等于
a2-b2
a2-b2

查看答案和解析>>

(2012•南湖區(qū)二模)在特殊四邊形的復(fù)習(xí)課上,王老師出了這樣一道題:
如圖1,在?ABCD中,E、F、G、H分別為AB,BC,CD,DA邊上的動(dòng)點(diǎn),連接EG,HF相交于點(diǎn)O,且∠HOE=∠ADC,若AB=a,AD=b,試探究:EG與FH的數(shù)量關(guān)系.
經(jīng)過小組討論后,小聰建議分以下三步進(jìn)行,請你解答:
(1)特殊情況,探索結(jié)論
當(dāng)?ABCD是邊長為a的正方形時(shí)(如圖2),請寫出EG與FH的數(shù)量關(guān)系(不必證明);
(2)嘗試變題,再探思路
當(dāng)?ABCD是邊長為a的菱形時(shí)(如圖3),EG與FH又有怎樣的數(shù)量關(guān)系呢?
小聰想:要求EG與FH的數(shù)量關(guān)系,就要構(gòu)成全等三角形或相似三角形,于是,分別過點(diǎn)G、H作GM⊥AB于點(diǎn)M,HN⊥BC于點(diǎn)N,在△HNF和△GME中,有∠GME=∠HNF=Rt∠,由菱形面積與性質(zhì)可得GM=HN,能否從已知條件得到∠MGE=∠NHF呢?請你根據(jù)小聰?shù)乃悸吠瓿山獯疬^程;
(3)特例啟發(fā),解答題目
猜想:原題中EG與FH的數(shù)量關(guān)系是
EG
FH
=
b
a
EG
FH
=
b
a
,并說明理由.

查看答案和解析>>

如圖1,在?ABCD中,∠BCD的平分線交直線AD于點(diǎn)F,∠BAD的平分線交DC延長線于E.
(1)在圖1中,證明AF=EC;
(2)若∠BAD=90°,G為CF的中點(diǎn)(如圖2),判斷△BEG的形狀,并證明.

查看答案和解析>>

23、如圖1,矩形ABCD中,BC=2AB,M為AD的中點(diǎn),連接BM.
(1)請你判斷并寫出∠BMD是∠ABM的幾倍;
(2)如圖2,在?ABCD中,BC=2AB,M為AD的中點(diǎn),CE⊥AB,連接EM、CM,請問:∠AEM與∠DME是否也具有(1)中的倍數(shù)關(guān)系?若有,請證明;若沒有,請說明理由.

查看答案和解析>>


同步練習(xí)冊答案