題目列表(包括答案和解析)
反比例函數(shù)y=(k≠0)任取一點M(a,b),過M作MA⊥x軸,MB⊥y軸,所得矩形OAMB的面積為S=MA·MB=|b|·|a|=|ab|.又因為b=,故ab=k,所以S=|k|(如圖(1)).
這就是說,過雙曲線上任意一點作x軸、y軸的垂線,所得的矩形面積為|k|.這就是k的幾何意義,會給解題帶來方便.現(xiàn)舉例如下:
例1:如(2)圖,已知點P1(x1,y1)和P2(x2,y2)都在反比例函數(shù)y=(k<0)的圖像上,試比較矩形P1AOB與矩形P2COD的面積大。
解答:=|k|
=|k|
故=
例2:如圖(3),在y=(x>0)的圖像上有三點A、B、C,經(jīng)過三點分別向x軸引垂線,交x軸于A1、B1、C1三點,連結(jié)OA、OB、OC,記△OAA1、△OBB1、△OCC1的面積分別為S1、S2、S3,則有( )
A.S1=S2=S3
B.S1<S2<S3
C.S3<S1<S2
D.S1>S2>S3
解答:∵=|k|=,
=|k|=
=|k|=
S1=S2=S3,故選A.
例3:一個反比例函數(shù)在第三象限的圖像如圖(4)所示,若A是圖像任意一點,AM⊥x軸,垂足為M,O是原點,如果△AOM的面積是3,那么這個反比例函數(shù)的解析式是________.
解答:∵S△AOM=|k|
又S△AOM=3,
∴|k|=3,|k|=6
∴k=±6
又∵曲線在第三象限
∴k>0∴k=6
∴所以反比例函數(shù)的解析式為y=.
根據(jù)是述意義,請你解答下題:
如圖(5),過反比例函數(shù)y=(x>0)的圖像上任意兩點A、B分別作軸和垂線,垂足分別為C、D,連結(jié)OA、OB,設AC與OB的交點為E,△AOE與梯形ECDB的面積分別為S1、S2,比較它們的大小,可得
A.S1>S2
B.S1=S2
C.S1<S2
D.大小關(guān)系不能確定
如圖所示,過反比例函數(shù)y=(x>0)的圖像上任意兩點A、B分別作x軸的垂線,垂足分別為C、D,連結(jié)OA、OB,設AC與OB的交點為E,△AOE與梯形ECDB的面積分別為S1、S2,比較它們的大小,可得
[ ]
反比例函數(shù)y=(k>0)在第一象限內(nèi)的圖像如圖所示.P為該圖像上任意一點,PQ垂直于x軸,垂足為Q.設△POQ的面積為S,則S的值與k之間的關(guān)系是
[ ]
如圖所示,已知:一次函數(shù)的圖像經(jīng)過第一、二、三象限,且與反比例函數(shù)的圖像交于A、B兩點,與y軸交于點C,與x軸交于點D,OB=,tan∠DOB=.
(1)求反比例函數(shù)的解析式;
(2)設點A的橫坐標為m,△ABO的面積為S,求S與m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍.
(3)當△OCD的面積等于時,試判斷過A、B兩點的拋物線在x軸上截得的線段長能否等于3.如果能,求此時拋物線的解析式;如果不能,請說明理由.
Rt△ABC在直角坐標系內(nèi)的位置如圖所示,反比例函數(shù)在第一象限內(nèi)的圖像與BC邊交于點D(4,m),與AB邊交于點E(2,n),△BDE的面積為2.
(1)求m與n的數(shù)量關(guān)系;
(2)當tan∠A=時,求反比例函數(shù)的解析式和直線AB的表達式;
(3)設直線AB與y軸交于點F,點P在射線FD上,在(2)的條件下,如果△AEO與△EFP相似,求點P的坐標.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com