(2)已知.求實數(shù)A.B.并分解因式 查看更多

 

題目列表(包括答案和解析)

閱讀并解答下列問題:我們熟悉兩個乘法公式:①(+b)2=2+2b+b2;②(-b)2=2-2b+b2.現(xiàn)將這兩個公式變形,可得到一個新的公式③:b=()2-()2, 這個公式形似平方差公式,我們不妨稱之為廣義的平立差公式。靈活、恰當(dāng)?shù)剡\(yùn)用公式③將會使一些數(shù)學(xué)問題迎刃而解。
例如:因式分解:(b-1)2+(+b-2)( +b-2b)
解:原式=+-
=(b-1)2+(+b-b-1)2-(b-1)2=(-1)(b-1)2=(-1)2(b-1)2你能利用公式(或其他方法)解決下列問題嗎?
已知各實數(shù),b,c滿足b=c2+9且=6-b,求證:="b"

查看答案和解析>>

閱讀并解答下列問題:我們熟悉兩個乘法公式:①(+b)2=2+2b+b2;②(-b)2=2-2b+b2.現(xiàn)將這兩個公式變形,可得到一個新的公式③:b=()2-()2, 這個公式形似平方差公式,我們不妨稱之為廣義的平立差公式。靈活、恰當(dāng)?shù)剡\(yùn)用公式③將會使一些數(shù)學(xué)問題迎刃而解。

例如:因式分解:(b-1)2+(+b-2)( +b-2b)

解:原式=+-

=(b-1)2+(+b-b-1)2-(b-1)2=(-1)(b-1)2=(-1)2(b-1)2你能利用公式(或其他方法)解決下列問題嗎?

已知各實數(shù),b,c滿足b=c2+9且=6-b,求證:="b"

 

查看答案和解析>>

閱讀并解答下列問題:我們熟悉兩個乘法公式:①(+b)2=2+2b+b2;②(-b)2=2-2b+b2.現(xiàn)將這兩個公式變形,可得到一個新的公式③:b=()2-()2, 這個公式形似平方差公式,我們不妨稱之為廣義的平立差公式。靈活、恰當(dāng)?shù)剡\(yùn)用公式③將會使一些數(shù)學(xué)問題迎刃而解。
例如:因式分解:(b-1)2+(+b-2)( +b-2b)
解:原式=+-
=(b-1)2+(+b-b-1)2-(b-1)2=(-1)(b-1)2=(-1)2(b-1)2你能利用公式(或其他方法)解決下列問題嗎?
已知各實數(shù),b,c滿足b=c2+9且=6-b,求證:="b"

查看答案和解析>>

閱讀并解答下列問題:我們熟悉兩個乘法公式:①(a+b)2=a2+2ab+b2;②(a-b)2=a2-2ab+b2.現(xiàn)將這兩個公式變形,可得到一個新的公式③:ab=(數(shù)學(xué)公式2-(數(shù)學(xué)公式2,這個公式形似平方差公式,我們不妨稱之為廣義的平立差公式.靈活、恰當(dāng)?shù)剡\(yùn)用公式③將會使一些數(shù)學(xué)問題迎刃而解.
例如:因式分解:(ab-1)2+(a+b-2)( a+b-2ab)
解:原式=(ab-1)2+數(shù)學(xué)公式-數(shù)學(xué)公式
=(ab-1)2+(a+b-ab-1)2-(ab-1)2=(a-1)(b-1)2=(a-1)2(b-1)2
你能利用公式(或其他方法)解決下列問題嗎?
已知各實數(shù)a,b,c滿足ab=c2+9且a=6-b,求證:a=b.

查看答案和解析>>

閱讀并解答下列問題:我們熟悉兩個乘法公式:①(a+b)2=a2+2ab+b2;②(a-b)2=a2-2ab+b2.現(xiàn)將這兩個公式變形,可得到一個新的公式③:ab=(
a+b
2
2-(
a-b
2
2,這個公式形似平方差公式,我們不妨稱之為廣義的平立差公式.靈活、恰當(dāng)?shù)剡\(yùn)用公式③將會使一些數(shù)學(xué)問題迎刃而解.
例如:因式分解:(ab-1)2+(a+b-2)( a+b-2ab)
解:原式=(ab-1)2+[
(a+b-2)-(a+b-2ab)
2
]2
-[
(a+b-2)-(a+b-2ab)
2
]2

=(ab-1)2+(a+b-ab-1)2-(ab-1)2=(a-1)(b-1)2=(a-1)2(b-1)2
你能利用公式(或其他方法)解決下列問題嗎?
已知各實數(shù)a,b,c滿足ab=c2+9且a=6-b,求證:a=b.

查看答案和解析>>


同步練習(xí)冊答案