證明:∵∠l=∠Ea∴ ∥ 理由是 .∴∠D=∠2理由是 .∵∠D=∠B∴∠ =∠ 理由是 .∴AB∥DC理由是 . 查看更多

 

題目列表(包括答案和解析)

已知拋物線y=ax2+2x+3(a≠0)有如下兩個特點(diǎn):①無論實(shí)數(shù)a怎樣變化,其頂點(diǎn)都在某一條直線l上;②若把頂點(diǎn)的橫坐標(biāo)減少,縱坐標(biāo)增大分別作為點(diǎn)A的橫、縱坐標(biāo);把頂點(diǎn)的橫坐標(biāo)增加,縱坐標(biāo)增加分別作為點(diǎn)B的橫、縱坐標(biāo),則A,B兩點(diǎn)也在拋物線y=ax2+2x+3(a≠0)上。
(1)求出當(dāng)實(shí)數(shù)a變化時(shí),拋物線y=ax2+2x+3(a≠0)的頂點(diǎn)所在直線l的解析式;
(2)請找出在直線l上但不是該拋物線頂點(diǎn)的所有點(diǎn),并說明理由;
(3)你能根據(jù)特點(diǎn)②的啟示,對一般二次函數(shù)y=ax2+bx+c(a≠0)提出一個猜想嗎?請用數(shù)學(xué)語言把你的猜想表達(dá)出來,并給予證明。

查看答案和解析>>

已知二次函數(shù)。
(1)求證:不論a為何實(shí)數(shù),此函數(shù)圖象與x軸總有兩個交點(diǎn);
(2)設(shè)a<0,當(dāng)此函數(shù)圖象與x軸的兩個交點(diǎn)的距離為時(shí),求出此二次函數(shù)的解析式;
(3)若此二次函數(shù)圖象與x軸交于A、B兩點(diǎn),在函數(shù)圖象上是否存在點(diǎn)P,使得△PAB的面積為,若存在求出P點(diǎn)坐標(biāo),若不存在請說明理由。

查看答案和解析>>

已知:如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA在y 軸的正半軸上,OC在x軸的正半軸上,OA=2,OC=3,過原點(diǎn)O作∠AOC的平分線交AB于點(diǎn)D,連接DC,過點(diǎn)D作DE⊥DC,交OA 于點(diǎn)E。
(1)求過點(diǎn)E、D、C的拋物線的解析式;
(2)將∠EDC繞點(diǎn)D按順時(shí)針方向旋轉(zhuǎn)后,角的一邊與 y軸的正半軸交于點(diǎn)F,另一邊與線段OC交于點(diǎn) G,如果DF與(1)中的拋物線交于另一點(diǎn)M,點(diǎn)M 的橫坐標(biāo)為,那么EF=2GO是否成立?若成立,請給予證明;若不成立,請說明理由;
(3)對于(2)中的點(diǎn)G,在位于第一象限內(nèi)的該拋物線上是否存在點(diǎn)Q,使得直線GQ與AB的交點(diǎn)P與點(diǎn) C、G構(gòu)成的△PCG是等腰三角形?若存在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

已知:如圖,拋物線y=ax2+bx+c經(jīng)過A(1,0)、B(5,0)、C(0,5)三點(diǎn)。

(1)求拋物線的函數(shù)關(guān)系式;
(2)若過點(diǎn)C的直線y=kx+b與拋物線相交于點(diǎn)E(4,m),請求出△CBE的面積S的值;
(3)在拋物線上求一點(diǎn)P0,使得△ABP0為等腰三角形,并寫出P0點(diǎn)的坐標(biāo);
(4)除(3)中所求的P0點(diǎn)外,在拋物線上是否還存在其它的點(diǎn)P使得△ABP為等腰三角形?若存在,請求出一共有幾個滿足條件的點(diǎn)P(要求簡要說明理由,但不證明);若不存在這樣的點(diǎn)P,請說明理由。

查看答案和解析>>

已知:拋物線y=ax2+bx+c(a≠0),頂點(diǎn)C(1,-3),與x軸交于A,B兩點(diǎn),A(-1,0)。

(1)求這條拋物線的解析式;
(2)如圖,以AB為直徑作圓,與拋物線交于點(diǎn)D,與拋物線對稱軸交于點(diǎn)E,依次連接A,D,B,E,點(diǎn)P為線段AB上一個動點(diǎn)(P與A,B兩點(diǎn)不重合),過點(diǎn)P作PM⊥AE于M,PN⊥DB于N,請判斷是否為定值?若是,請求出此定值;若不是,請說明理由;
(3)在(2)的條件下,若點(diǎn)S是線段EP上一點(diǎn),過點(diǎn)S作FG⊥EP,F(xiàn)G分別與邊AE,BE相交于點(diǎn)F,G(F與A,E不重合,G與E,B不重合),請判斷是否成立,若成立,請給出證明;若不成立,請說明理由。

查看答案和解析>>


同步練習(xí)冊答案