∵AP=AD.△ABP和△ABD的高相等. 查看更多

 

題目列表(包括答案和解析)

提出問(wèn)題:如圖①,在四邊形ABCD中,P是AD邊上任意一點(diǎn),△PBC與△ABC和△DBC的面積之間有什么關(guān)系?

探究發(fā)現(xiàn):為了解決這個(gè)問(wèn)題,我們可以先從一些簡(jiǎn)單的、特殊的情形入手:

(1)當(dāng)AP=AD時(shí)(如圖②):

∵AP=AD,△ABP和△ABD的高相等,

∴SABPSABD

∵PD=AD-AP=AD,△CDP和△CDA的高相等,

∴SCDPSCDA

∴SPBC =S四邊形ABCD-SABP-SCDP

=S四邊形ABCDSABDSCDA

=S四邊形ABCD(S四邊形ABCD-SDBC)-(S四邊形ABCD-SABC)

SDBCSABC

(2)當(dāng)AP=AD時(shí),探求SPBC與SABC和SDBC之間的關(guān)系,寫(xiě)出求解過(guò)程;

(3)當(dāng)AP=AD時(shí),SPBC與SABC和SDBC之間的關(guān)系式為:________________;

(4)一般地,當(dāng)AP=AD(n表示正整數(shù))時(shí),探求SPBC與SABC和SDBC之間的關(guān)系,寫(xiě)出求解過(guò)程;

問(wèn)題解決:當(dāng)AP=AD(0≤≤1)時(shí),SPBC與SABC和SDBC之間的關(guān)系式為:___________.

查看答案和解析>>

提出問(wèn)題:如圖①,在四邊形ABCD中,PAD邊上任意一點(diǎn),△PBC與△ABC和△DBC的面積之間有什么關(guān)系?

探究發(fā)現(xiàn):為了解決這個(gè)問(wèn)題,我們可以先從一些簡(jiǎn)單的、特殊的情形入手:

(1)當(dāng)APAD時(shí)(如圖②):

       

APAD,△ABP和△ABD的高相等,

SABPSABD

PDADAPAD,△CDP和△CDA的高相等,

SCDPSCDA

SPBC S四邊形ABCDSABPSCDP

S四邊形ABCDSABDSCDA

S四邊形ABCD(S四邊形ABCDSDBC)(S四邊形ABCDSABC)

SDBCSABC

(2)當(dāng)APAD時(shí),探求SPBCSABCSDBC之間的關(guān)系,寫(xiě)出求解過(guò)程;

(3)當(dāng)APAD時(shí),SPBCSABCSDBC之間的關(guān)系式為:________________

(4)一般地,當(dāng)APADn表示正整數(shù))時(shí),探求SPBCSABCSDBC之間的關(guān)系,寫(xiě)出求解過(guò)程;

問(wèn)題解決:當(dāng)APAD01)時(shí),SPBCSABCSDBC之間的關(guān)系式為:___________

查看答案和解析>>

提出問(wèn)題:如圖①,在四邊形ABCD中,P是AD邊上任意一點(diǎn),△PBC與△ABC和△DBC的面積之間有什么關(guān)系?

探究發(fā)現(xiàn):為了解決這個(gè)問(wèn)題,我們可以先從一些簡(jiǎn)單的、特殊的情形入手:

(1)當(dāng)AP=AD時(shí)(如圖②):

∵AP=AD,△ABP和△ABD的高相等,

∴S△ABPS△ABD

∵PD=AD-AP=AD,△CDP和△CDA的高相等,

∴S△CDPS△CDA

∴S△PBC=S四邊形ABCD-S△ABP-S△CDP

=S四邊形ABCDS△ABDS△CDA

=S四邊形ABCD(S四邊形ABCD-S△DBC)-(S四邊形ABCD-S△ABC)

S△DBCS△ABC

(2)當(dāng)AP=AD時(shí),探求S△PBC與S△ABC和S△DBC之間的關(guān)系,寫(xiě)出求解過(guò)程;

(3)當(dāng)AP=AD時(shí),S△PBC與S△ABC和S△DBC之間的關(guān)系式為:________;

(4)一般地,當(dāng)AP=AD(n表示正整數(shù))時(shí),探求S△PBC與S△ABC和S△DBC之間的關(guān)系,寫(xiě)出求解過(guò)程;

問(wèn)題解決:當(dāng)AP=AD(0≤≤1)時(shí),S△PBC與S△ABC和S△DBC之間的關(guān)系式為:________.

查看答案和解析>>

提出問(wèn)題:如圖,在四邊形ABCD中,P是AD邊上任意一點(diǎn),△PBC與△ABC和△DBC的面積之間有什么關(guān)系?

探究發(fā)現(xiàn):為了解決這個(gè)問(wèn)題,我們可以先從一些簡(jiǎn)單的、特殊的情形入手:

(1)當(dāng)AP=AD時(shí)(如圖):

∵AP=AD,△ABP和△ABD的高相等,

∴S△ABPS△ABD

∵PD=AD-AP=AD,△CDP和△CDA的高相等,

∴S△CDPS△CDA

∴S△PBC=S四邊形ABCD-S△ABP-S△CDP

=S四邊形ABCDS△ABDS△CDA

=S四邊形ABCD(S四邊形ABCD-S△DBC)-(S四邊形ABCD-S△ABC)

S△DBCS△ABC

(2)當(dāng)時(shí),探求S△PBC與S△ABC和S△DBC之間的關(guān)系,寫(xiě)出求解過(guò)程;

(3)當(dāng)時(shí),S△PBC與S△ABC和S△DBC之間的關(guān)系式為:________;

(4)一般地,當(dāng)(n表示正整數(shù))時(shí),探求S△PBC與S△ABC和S△DBC之間的關(guān)系,寫(xiě)出求解過(guò)程;

問(wèn)題解決:當(dāng)時(shí),S△PBC與S△ABC和S△DBC之間的關(guān)系式為:________.

查看答案和解析>>


同步練習(xí)冊(cè)答案