題目列表(包括答案和解析)
如圖,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c.
操作示例
我們可以取直角梯形ABCD的腰CD的中點P,過點P作PE∥AB,裁掉△PEC,并將△PEC拼接到△PFD的位置,構(gòu)成新圖形.(如圖1)
思考發(fā)現(xiàn)
小敏在操作后發(fā)現(xiàn),該剪拼方法就是將△PEC繞點P逆時針旋轉(zhuǎn)180°到△PED的位置,易知PE與PF在同一直線上,又因為在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,則∠FDP+∠ADP=180°,所以AD和DF在同一直線上,那么構(gòu)成的新圖形是一個四邊形,而且進一步可證得,該四邊形是一個特殊的平行四邊形——矩形.
實踐探究
(1)矩形ABEF的面積是________.(用含a、b、c的式子表示)
(2)類比圖(1)的剪接辦法,請你就圖(2)和圖(3)中的兩種情形分別畫出剪拼成一個平行四邊形的示意圖.(注:圖(2)和圖(3)中的四邊形均為梯形)
解決問題
小明原來有一塊七巧板,形狀為平行四邊形ACDE,如圖(4)所示,不小心損壞了一條邊變成了五邊形ABCDE的形狀如圖(5)所示,小明現(xiàn)在打算將圖(5)中五邊形在不改變其面積的前提下通過裁剪與拼接變成一個平行四邊形,請你幫他畫出剪接的示意圖,并說明理由.
如果把連接梯形兩腰的中點的線段叫做梯形的中位線,那么梯形的中位線有什么特征呢?
如圖,在梯形ABCD中,AD∥BC,點E、F分別為兩腰AB、CD的中點.則EF為梯形ABCD的中位線.仿照三角形的中位線定理,請你猜想EF的長與上、下底的關(guān)系.
猜想:EF=________.
我們按如下思路探究:
(1)連接AF并延長交BC的延長線于點G,你發(fā)現(xiàn)△ADF和△GCF有怎樣的關(guān)系?證明你的結(jié)論.
(2)由(1)的結(jié)論,可以得出EF是△ABG中怎樣的線段?
(3)由此你能證明你的猜想嗎?試一試.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com