(3)設(shè)拋物線的對(duì)稱軸為直線.P是直線上的一點(diǎn).且△PAB的面積等于△AOB.求點(diǎn)P的坐標(biāo). 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)設(shè)拋物線C1:y=a1x2+b1x+c1的頂點(diǎn)為(m1,n1),拋物線C2:y=a2x2+b2x+c2的頂點(diǎn)為(m2,n2),如果a1+a2=0,那么我們稱拋物線C1與C2關(guān)于點(diǎn)(
m1+m2
2
,
n1+n2
2
)中心對(duì)稱.給出拋物線①y=x2+4x+3,拋物線②y=-x2+4x+1.
(1)判斷拋物線①與拋物線②是否中心對(duì)稱?若是,求出對(duì)稱中心的坐標(biāo);若不是,說明理由;
(2)直線y=m交拋物線①于A、B兩點(diǎn),交拋物線②于C、D兩點(diǎn),如果AB=2CD,求m的值;
(3)設(shè)拋物線①與拋物線②的頂點(diǎn)分別為M、N,點(diǎn)P在x軸上移動(dòng),若△MNP為直角三角形,求點(diǎn)P坐標(biāo).

查看答案和解析>>

精英家教網(wǎng)如圖,對(duì)稱軸為直線x=
72
的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4).
(1)求拋物線解析式及頂點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)E(x,y)是拋物線上一動(dòng)點(diǎn),且位于第四象限,四邊形OEAF是以O(shè)A為對(duì)角線的平行四邊形,求平行四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
①當(dāng)平行四邊形OEAF的面積為24時(shí),請(qǐng)判斷平行四邊形OEAF是否為菱形?
②是否存在點(diǎn)E,使平行四邊形OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

如圖,對(duì)稱軸為直線x=
72
的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4).
(1)求拋物線解析式及頂點(diǎn)D的坐標(biāo);
(2)設(shè)點(diǎn)E(x,y)是拋物線上位于第四象限內(nèi)一動(dòng)點(diǎn),將△OAE繞OA的中點(diǎn)旋轉(zhuǎn)180°,點(diǎn)E落到點(diǎn)F的位置.求四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
①當(dāng)四邊形OEAF的面積為24時(shí),請(qǐng)判斷四邊形OEAF的形狀.
②是否存在點(diǎn)E,使四邊形OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.
(3)若點(diǎn)P是x軸上一點(diǎn),以P、A、D為頂點(diǎn)作平行四邊形,該平行四邊形的另一頂點(diǎn)在y軸上,請(qǐng)直接寫出滿足條件的所有點(diǎn)P的坐標(biāo).

查看答案和解析>>

如圖,對(duì)稱軸為直線x=的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4).
(1)求拋物線解析式及頂點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)E(x,y)是拋物線上一動(dòng)點(diǎn),且位于第四象限,四邊形OEAF是以O(shè)A為對(duì)角線的平行四邊形,求平行四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)在(2)的基礎(chǔ)上試探索:
①當(dāng)平行四邊形OEAF的面積為24時(shí),請(qǐng)判斷平行四邊形OEAF是否為菱形?
②是否存在點(diǎn)E,使平行四邊形OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

如圖,對(duì)稱軸為直線x=的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4).
(1)求拋物線解析式及頂點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)E(x,y)是拋物線上一動(dòng)點(diǎn),且位于第四象限,四邊形OEAF是以O(shè)A為對(duì)角線的平行四邊形,求四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)①當(dāng)四邊形OEAF的面積為24時(shí),請(qǐng)判斷OEAF是否為菱形?
②是否存在點(diǎn)E,使四邊形OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案