題目列表(包括答案和解析)
方程ax2-2=0的一個根為1,則a的值為 .
若x1、x2是關(guān)于一元二次方程ax2+bx+c(a≠0)的兩個根,則方程的兩個根x1、x2和系數(shù)a、b、c有如下關(guān)系:x1+x2=,x1•x2=.把它稱為一元二次方程根與系數(shù)關(guān)系定理.如果設(shè)二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個交點為A(x1,0),B(x2,0).利用根與系數(shù)關(guān)系定理可以得到A、B連個交點間的距離為:AB=|x1-x2|=
。
參考以上定理和結(jié)論,解答下列問題:
設(shè)二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸的兩個交點A(x1,0),B(x2,0),拋物線的頂點為C,顯然△ABC為等腰三角形.
(1)當(dāng)△ABC為直角三角形時,求b2-4ac的值;
(2)當(dāng)△ABC為等邊三角形時,求b2-4ac的值.
若x1、x2是關(guān)于一元二次方程ax2+bx+c(a≠0)的兩個根,則方程的兩個根x1、x2和系數(shù)a、b、c有如下關(guān)系:x1+x2=,x1•x2=.把它稱為一元二次方程根與系數(shù)關(guān)系定理.如果設(shè)二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個交點為A(x1,0),B(x2,0).利用根與系數(shù)關(guān)系定理可以得到A、B連個交點間的距離為:AB=|x1-x2|=
。
參考以上定理和結(jié)論,解答下列問題:
設(shè)二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸的兩個交點A(x1,0),B(x2,0),拋物線的頂點為C,顯然△ABC為等腰三角形.
(1)當(dāng)△ABC為直角三角形時,求b2-4ac的值;
(2)當(dāng)△ABC為等邊三角形時,求b2-4ac的值.
閱讀材料:
若關(guān)于x的一元二次方程ax2+bx+c=0的兩實根為x1、x2,則兩根與方程系數(shù)之間有如下關(guān)系:x1+x2=-,x1 x2= .
根據(jù)上述材料填空:已知方程的兩個根分別為、,則的值為=_______.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com