所以在內(nèi)是增函數(shù).在內(nèi)是減函數(shù). -9分(Ⅲ)∵函數(shù)在上為單調(diào)函數(shù).⑴ 若在上為單調(diào)遞增函數(shù).則當恒成立.∴ 即當恒成立 ∴ --11分⑵ 若在上為單調(diào)遞減函數(shù).則當恒成立.∴ 即當恒成立. ∴,綜上所述:或 ---14分 查看更多

 

題目列表(包括答案和解析)

已知函數(shù),(),

(1)若曲線與曲線在它們的交點(1,c)處具有公共切線,求a,b的值

(2)當時,若函數(shù)在區(qū)間[k,2]上的最大值為28,求k的取值范圍

【解析】(1) 

∵曲線與曲線在它們的交點(1,c)處具有公共切線

,

(2)當時,

,則,令,為單調(diào)遞增區(qū)間,為單調(diào)遞減區(qū)間,其中F(-3)=28為極大值,所以如果區(qū)間[k,2]最大值為28,即區(qū)間包含極大值點,所以

【考點定位】此題應該說是導數(shù)題目中較為常規(guī)的類型題目,考查的切線,單調(diào)性,極值以及最值問題都是課本中要求的重點內(nèi)容,也是學生掌握比較好的知識點,在題目中能夠發(fā)現(xiàn)F(-3)=28,和分析出區(qū)間[k,2]包含極大值點,比較重要

 

查看答案和解析>>

P,Q 是平面α 內(nèi)兩個定點,點M 為平面α 內(nèi)的動點,且
|MP|
|MQ|
 (λ>0,且λ≠1),點M 的軌跡所圍成的平面區(qū)域的面積為S,設S=f(λ) (λ>0,且λ≠1),則以下判斷正確的是(  )
A、f(λ)在(0,1)上是增函數(shù),在(1,+∞)上也是增函數(shù)
B、f(λ)在(0,1)上是減函數(shù),在(1,+∞)上也是減函數(shù)
C、f(λ)在(0,1)上是增函數(shù),在(1,+∞)上是減函數(shù)
D、f(λ)在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù)

查看答案和解析>>

(本小題滿分9分)以下是用二分法求方程的一個近似解(精確度為0.1)的不完整的過程,請補充完整。

區(qū)間

中點

符號

區(qū)間長度

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

解:設函數(shù),其圖象在上是連續(xù)不斷的,且上是單調(diào)遞______(增或減)。先求_______,______,____________。

所以在區(qū)間____________內(nèi)存在零點,再填上表:

下結(jié)論:_______________________________。

(可參考條件:,;符號填+、-)

 

查看答案和解析>>

(本小題滿分9分)以下是用二分法求方程的一個近似解(精確度為0.1)的不完整的過程,請補充完整。
區(qū)間
中點
符號
區(qū)間長度
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
解:設函數(shù),其圖象在上是連續(xù)不斷的,且上是單調(diào)遞______(增或減)。先求_______,______,____________。
所以在區(qū)間____________內(nèi)存在零點,再填上表:
下結(jié)論:_______________________________。
(可參考條件:;符號填+、-)

查看答案和解析>>

(本小題滿分9分)

  以下是用二分法求方程的一個近似解(精確度為0.1)的不完整的過程,請補充完整。

區(qū)間

中點

符號

區(qū)間長度

解:設函數(shù),

其圖象在上是連續(xù)不

斷的,且在上是

單調(diào)遞______(增或減)。

先求_______,

______,

____________。

所以在區(qū)間____________內(nèi)存在零點,再填上表:

下結(jié)論:_______________________________。

(可參考條件:;符號填+、-)

查看答案和解析>>


同步練習冊答案