如圖,在平面直角坐標(biāo)系xOy中,已知點A(4,0),點B(0,3),點P從點B出發(fā)沿BA方向向點A勻速運動,速度為每秒1個單位長度,點Q從點A出發(fā)沿AO方向向點O勻速
運動,速度為每秒2個單位長度,連接PQ.若設(shè)運動的時間為t秒(0<t<2).
(1)求直線AB的解析式;
(2)設(shè)△AQP的面積為y,求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時刻t,使線段PQ恰好把△AOB的周長和面積同時平分?若存在,請求出此時t的值;若不存在,請說明理由;
(4)連接PO,并把△PQO沿QO翻折,得到四邊形PQP′O,那么是否存在某一時刻t,使四邊形PQP′O為菱形?若存在,請求出此時點Q的坐標(biāo)和菱形的邊長;若不存在,請說明理由.