題目列表(包括答案和解析)
如圖,在四邊形ABCD中,AB=CD,E、F分別是BC、AD的中點,連結EF并延長,分別與BA、CD的延長線交于點M、N,則∠BME=∠CNE(不需證明).
(溫馨提示:在下圖中,連結BD,取BD的中點H,連結HE、HF,根據(jù)三角形中位線定理,證明HE=HF,從而∠1=∠2,再利用平行線性質,可證得∠BME=∠CNE.)
問題一:如圖,在四邊形ADBC中,AB與CD相交于點O,AB=CD,E、F分別是BC、AD的中點,連結EF,分別交DC、AB于點M、N,判斷△OMN的形狀,請直接寫出結論.
問題二:如圖,在△ABC中,AC>AB,D點在AC上,AB=CD,E、F分別是BC、AD的中點,連結EF并延長,與BA的延長線交于點G,若∠EFC=60°,連結GD,判斷△AGD的形狀并證明.
如圖,在直角坐標系的直角頂點A,C始終在x軸的正半軸上,B,D在第一象限內,點B在直線OD上方,OC=CD,OD=2,M為OD的中點,AB與OD相交于E,當點B位置變化時,
試解決下列問題:
(1)填空:點D坐標為 ;
(2)設點B橫坐標為t,請把BD長表示成關于t的函數(shù)關系式,并化簡;
(3)等式BO=BD能否成立?為什么?
(4)設CM與AB相交于F,當△BDE為直角三角形時,判斷四邊形BDCF的形狀,并證明你的結論.
如圖,在直角坐標系的直角頂點A,C始終在x軸的正半軸上,B,D在第一象限內,點B在直線OD上方,OC=CD,OD=2,M為OD的中點,AB與OD相交于E,當點B位置變化時,
試解決下列問題:
(1)填空:點D坐標為 ;
(2)設點B橫坐標為t,請把BD長表示成關于t的函數(shù)關系式,并化簡;
(3)等式BO=BD能否成立?為什么?
(4)設CM與AB相交于F,當△BDE為直角三角形時,判斷四邊形BDCF的形狀,并證明你的結論.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com