題目列表(包括答案和解析)
(本題滿分10分)
如圖,將OA = 6,AB = 4的矩形OABC放置在平面直角坐標(biāo)系中,動點M、N以每秒1個單位的速度分別從點A、C同時出發(fā),其中點M沿AO向終點O運動,點N沿CB向終點B運動,當(dāng)兩個動點運動了t秒時,過點N作NP⊥BC,交OB于點P,連接MP.
(1)點B的坐標(biāo)為 ;用含t的式子表示點P的坐標(biāo)為 ;(3分)
(2)記△OMP的面積為S,求S與t的函數(shù)關(guān)系式(0 < t < 6);并求t為何值時,S有最大值?(4分)
(3)試探究:當(dāng)S有最大值時,在y軸上是否存在點T,使直線MT把△ONC分割成三角形和四邊形兩部分,且三角形的面積是△ONC面積的?若存在,求出點T的坐標(biāo);若不存在,請說明理由.(3分)
(本題滿分6分)如圖,將矩形ABCD沿對角線AC剪開,再把△ACD沿CA方向平移得到△A1C1D1.
(1)證明:△A1AD1≌△CC1B;
(2)若∠ACB=30°,試問當(dāng)點C1在線段AC上的什么位置時,四邊形ABC1D1是菱形. (直接寫出答案)
(本題滿分12分)
情境觀察:將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點A′與點A重合,并繞點A按逆時針方向旋轉(zhuǎn),使點D、A(A′)、B在同一條直線上,如圖2所示.
觀察圖2可知:與BC相等的線段是 ▲ ,∠CAC′= ▲ °.
問題探究:如圖3,△ABC中,AG⊥BC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點E、F作射線GA的垂線,垂足分別為P、Q. 試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.
拓展延伸:如圖4,△ABC中,AG⊥BC于點G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點H. 若AB= k AE,AC= k AF,試探究HE與HF之間的數(shù)量關(guān)系,并說明理由.
(11·珠海)(本題滿分7分)如圖,將一個鈍角△ABC(其中∠ABC=120°)繞
點B順時針旋轉(zhuǎn)得△A1BC1,使得C點落在AB的延長線上的點C1處,連結(jié)AA1.
(1)寫出旋轉(zhuǎn)角的度數(shù);
(2)求證:∠A1AC=∠C1.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com