14.方程2+b+c=0中.當b2=0時.方程的解的情況是 . 查看更多

 

題目列表(包括答案和解析)

先閱讀,再填空解答
一元二次方程ax2+bx+c=o(a≠0)的求根公式是x=數(shù)學(xué)公式(b2-4ac≥0),顯然這個一元二次方程的根的情況由b2-4ac來決定,我們把b2-4ac叫做一元二次方程ax2+bx+c=0的根的判別式,用符號“△”來表示.
(1)當△>0時,一元二次方程ax2+bx+c=0有兩個______根
當△=0時,一元二次方程ax2+bx+c=0有兩個______根
當△<0時,一元二次方程ax2+bx+c=0______根

(2)已知關(guān)于x的方程,2x2-(4k+1)x+2k2-1=0,
其中△=[-(4k+1)]2-4×2(2k2-1)=16k2+8k+1-16k2+8=8k+9
①當8k+9>0時即k>-數(shù)學(xué)公式時,原方程有兩個不相等的實數(shù)根
②當8k+9=0時,即k=-數(shù)學(xué)公式時,原方程有兩個相等的實數(shù)根
③當8k+9<0時,即k<-數(shù)學(xué)公式時,原方程沒有實數(shù)根
請根據(jù)閱讀材料解答下面問題
求證:關(guān)于x的方程x2-(2k+1)x+k-1=0有兩個不相等的實數(shù)根.

查看答案和解析>>

先閱讀,再填空解答
一元二次方程ax2+bx+c=o(a≠0)的求根公式是x=(b2-4ac≥0),顯然這個一元二次方程的根的情況由b2-4ac來決定,我們把b2-4ac叫做一元二次方程ax2+bx+c=0的根的判別式,用符號“△”來表示.
(1)當△>0時,一元二次方程ax2+bx+c=0有兩個______根
當△=0時,一元二次方程ax2+bx+c=0有兩個______根
當△<0時,一元二次方程ax2+bx+c=0______根

(2)已知關(guān)于x的方程,2x2-(4k+1)x+2k2-1=0,
其中△=[-(4k+1)]2-4×2(2k2-1)=16k2+8k+1-16k2+8=8k+9
①當8k+9>0時即k>-時,原方程有兩個不相等的實數(shù)根
②當8k+9=0時,即k=-時,原方程有兩個相等的實數(shù)根
③當8k+9<0時,即k<-時,原方程沒有實數(shù)根
請根據(jù)閱讀材料解答下面問題
求證:關(guān)于x的方程x2-(2k+1)x+k-1=0有兩個不相等的實數(shù)根.

查看答案和解析>>

關(guān)于x的一元二次方程ax2+bx+c=0中,當b2-4a≥0,方程的兩個根x1和x2不相等或相等,而且有x1+x2=-
b
a
,x1•x2=
c
a
;當b2-4ac<0時,方程無實數(shù)解.比如方程x2-7x+12=0的兩根x1=3,x2=4,則有b2-4ac=49-4×1×12=1>0,而且x1+x2=7,x1•x2=12,2x2+x+1=0,b2-4ac=1-4×2×1=-7<0,方程無解.根據(jù)以上情況解下列問題.
已知Rt△ABC中,∠C=90°,BC=a,AC=b,a>b,且a,b是關(guān)于x的方程x2-(m-1)x+(m+4)=0的兩根,當AB=5時:(1)求m的值;(2)求a和b.

查看答案和解析>>

關(guān)于x的一元二次方程ax2+bx+c=0中,當b2-4a≥0,方程的兩個根x1和x2不相等或相等,而且有x1+x2=-
b
a
,x1•x2=
c
a
;當b2-4ac<0時,方程無實數(shù)解.比如方程x2-7x+12=0的兩根x1=3,x2=4,則有b2-4ac=49-4×1×12=1>0,而且x1+x2=7,x1•x2=12,2x2+x+1=0,b2-4ac=1-4×2×1=-7<0,方程無解.根據(jù)以上情況解下列問題.
已知Rt△ABC中,∠C=90°,BC=a,AC=b,a>b,且a,b是關(guān)于x的方程x2-(m-1)x+(m+4)=0的兩根,當AB=5時:(1)求m的值;(2)求a和b.

查看答案和解析>>

閱讀下列材料,按要求解答問題:

如圖2-1,在ΔABC中,∠A=2∠B,且∠A=60°.小明通過以下計算:由題意,∠B=30°,∠C=90°,c=2b,ab,得a2b2=(b)2b2=2b2b·c.即a2b2 bc

于是,小明猜測:對于任意的ΔABC,當∠A=2∠B時,關(guān)系式a2b2bc都成立.

(1)如圖2-2,請你用以上小明的方法,對等腰直角三角形進行驗證,判斷小明的猜測是否正確,并寫出驗證過程;

(2)如圖2-3,你認為小明的猜想是否正確,若認為正確,請你證明;否則,請說明理由;

(3)若一個三角形的三邊長恰為三個連續(xù)偶數(shù),且∠A=2∠B,請直接寫出這個三角形三邊的長,不必說明理由.

 

查看答案和解析>>


同步練習(xí)冊答案