(2006•揚州)在一個不透明的口袋里裝有只有顏色不同的黑、白兩種顏色的球共20只,某學(xué)習(xí)小組做摸球?qū)嶒,將球攪勻后從中隨機(jī)摸出一個球記下顏色,再把它放回袋中,不斷重復(fù).下表是活動進(jìn)行中的一組統(tǒng)計數(shù)據(jù):
摸球的次數(shù)n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次數(shù)m | 58 | 96 | 116 | 295 | 484 | 601 |
摸到白球的頻率 | 0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
(1)請估計:當(dāng)n很大時,摸到白球的頻率將會接近______;
(2)假如你去摸一次,你摸到白球的概率是______,摸到黑球的概率是______;
(3)試估算口袋中黑、白兩種顏色的球各有多少只?
(4)解決了上面的問題,小明同學(xué)猛然頓悟,過去一個懸而未決的問題有辦法了.這個問題是:在一個不透明的口袋里裝有若干個白球,在不允許將球倒出來數(shù)的情況下,如何估計白球的個數(shù)(可以借助其他工具及用品)請你應(yīng)用統(tǒng)計與概率的思想和方法解決這個問題,寫出解決這個問題的主要步驟及估算方法.