(I)討論和是函數(shù)的極大值還是極小值, 查看更多

 

題目列表(包括答案和解析)

(04年天津卷理)(12分)

 已知函數(shù)處取得極值。

(I)討論是函數(shù)的極大值還是極小值;

(II)過點作曲線的切線,求此切線方程。

 

查看答案和解析>>

數(shù)學(文)

第I卷(共60分)

一、選擇題(每小題5分,共60分)

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

D

B

A

A

D

A

C

B

A

A

第Ⅱ卷(共90分)

二、填空題(每小題4分,共16分)

13.6ec8aac122bd4f6e     14.3        15.97       16.③

三、解答題(共74分)

17.(本小題滿分12分)

   (I)6ec8aac122bd4f6e的內角和6ec8aac122bd4f6e。

        6ec8aac122bd4f6e,

        6ec8aac122bd4f6e

   (Ⅱ)6ec8aac122bd4f6e

         6ec8aac122bd4f6e

         當6ec8aac122bd4f6e6ec8aac122bd4f6e時,6ec8aac122bd4f6e取最大值6ec8aac122bd4f6e

18.(本題滿分12分)

    記A:該夫婦生一個小孩是患病男孩,B:該夫婦生一個小孩是患病女孩:C:該夫婦生一個小孩是不患病男孩;D:該夫婦生一個小孩是不患病女孩,則

    6ec8aac122bd4f6e

   (I)6ec8aac122bd4f6e

          6ec8aac122bd4f6e

          6ec8aac122bd4f6e

   (Ⅱ)該夫婦所生的前兩個是患病男孩,后一個患病女孩的概率為6ec8aac122bd4f6e,所以

             6ec8aac122bd4f6e

19.(本題滿分12分)

解法一:(I)證明:連接6ec8aac122bd4f6e,設6ec8aac122bd4f6e,連接DE

6ec8aac122bd4f6e     6ec8aac122bd4f6e三棱柱6ec8aac122bd4f6e是正三棱柱,且6ec8aac122bd4f6e,

     6ec8aac122bd4f6e四邊形6ec8aac122bd4f6e是正方形,

     ∴E是6ec8aac122bd4f6e的中點,又6ec8aac122bd4f6e6ec8aac122bd4f6e的中點,

     ∴6ec8aac122bd4f6e

     ∵6ec8aac122bd4f6e平面6ec8aac122bd4f6e平面6ec8aac122bd4f6e,

     ∴6ec8aac122bd4f6e平面6ec8aac122bd4f6e

(Ⅱ)解:在平面6ec8aac122bd4f6e內作6ec8aac122bd4f6e于點6ec8aac122bd4f6e,在面6ec8aac122bd4f6e;內作6ec8aac122bd4f6e6ec8aac122bd4f6e連接6ec8aac122bd4f6e。

     ∵平面6ec8aac122bd4f6e平面6ec8aac122bd4f6e,∴6ec8aac122bd4f6e平面6ec8aac122bd4f6e,

     ∵6ec8aac122bd4f6e6ec8aac122bd4f6e在平面6ec8aac122bd4f6e上的射影,6ec8aac122bd4f6e

     ∴6ec8aac122bd4f6e是二面角6ec8aac122bd4f6e的平面角

     設6ec8aac122bd4f6e在正6ec8aac122bd4f6e中,6ec8aac122bd4f6e

     在6ec8aac122bd4f6e中,6ec8aac122bd4f6e6ec8aac122bd4f6e中,6ec8aac122bd4f6e

     從而6ec8aac122bd4f6e

     所以,二面角6ec8aac122bd4f6e的平面角的余弦值為6ec8aac122bd4f6e

解法二:建立空間直角坐標系6ec8aac122bd4f6e,如圖,

(I)證明:連接6ec8aac122bd4f6e6ec8aac122bd4f6e,連接6ec8aac122bd4f6e,設6ec8aac122bd4f6e

6ec8aac122bd4f6e    則6ec8aac122bd4f6e

    6ec8aac122bd4f6e

    6ec8aac122bd4f6e

    6ec8aac122bd4f6e平面6ec8aac122bd4f6e平面6ec8aac122bd4f6e平面6ec8aac122bd4f6e

(Ⅱ)解:∵6ec8aac122bd4f6e

      設6ec8aac122bd4f6e是平面6ec8aac122bd4f6e的法向量,則6ec8aac122bd4f6e,且6ec8aac122bd4f6e

      故6ec8aac122bd4f6e,取6ec8aac122bd4f6e,得6ec8aac122bd4f6e;

      同理,可求得平面6ec8aac122bd4f6e的法向量是6ec8aac122bd4f6e

      設二面角6ec8aac122bd4f6e的大小為6ec8aac122bd4f6e,則6ec8aac122bd4f6e

      所以,二面角6ec8aac122bd4f6e的平面角的余弦值為6ec8aac122bd4f6e

20.(本題滿分12分)

   (I)6ec8aac122bd4f6e,依題意,6ec8aac122bd4f6e,即

        6ec8aac122bd4f6e

        解得6ec8aac122bd4f6e

        6ec8aac122bd4f6e

        令6ec8aac122bd4f6e,得6ec8aac122bd4f6e6ec8aac122bd4f6e列表可得:

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

1

6ec8aac122bd4f6e

6ec8aac122bd4f6e

+

0

0

+

6ec8aac122bd4f6e

遞增

極大

遞減

極小

遞增

        所以,6ec8aac122bd4f6e是極大值;6ec8aac122bd4f6e是極小值

  (Ⅱ)曲線方程為6ec8aac122bd4f6e6ec8aac122bd4f6e不在曲線上,

        設切點為6ec8aac122bd4f6e,則點6ec8aac122bd4f6e的坐標滿足6ec8aac122bd4f6e

        因6ec8aac122bd4f6e,故切線的方程為6ec8aac122bd4f6e

        注意到點6ec8aac122bd4f6e在切線上,有6ec8aac122bd4f6e

        化簡得6ec8aac122bd4f6e,解得6ec8aac122bd4f6e

21.(本題滿分12分)

  (I)將6ec8aac122bd4f6e代入6ec8aac122bd4f6e6ec8aac122bd4f6e,整理得

      6ec8aac122bd4f6e

      由6ec8aac122bd4f6e6ec8aac122bd4f6e,故

6ec8aac122bd4f6e

(Ⅱ)當兩條切線的斜率都存在而且不等于6ec8aac122bd4f6e時,設其中一條的斜率為k,

      則另外一條的斜率為6ec8aac122bd4f6e

      于是由上述結論可知橢圓斜率為k的切線方程為

      6ec8aac122bd4f6e    ①

      又橢圓斜率為6ec8aac122bd4f6e的切線方程為

      6ec8aac122bd4f6e    ②

       由①得6ec8aac122bd4f6e

       由②得6ec8aac122bd4f6e

兩式相加得6ec8aac122bd4f6e

      于是,所求P點坐標6ec8aac122bd4f6e滿足6ec8aac122bd4f6e因此,6ec8aac122bd4f6e

      當一條切線的斜率不存在時,另一條切線的斜率必為0,此時顯然也有6ec8aac122bd4f6e

      所以6ec8aac122bd4f6e為定值。

 

22.(本題滿分14分)

 (I)由6ec8aac122bd4f6e6ec8aac122bd4f6e

      當6ec8aac122bd4f6e時,6ec8aac122bd4f6e,化簡得

      6ec8aac122bd4f6e  ①

      以6ec8aac122bd4f6e代替6ec8aac122bd4f6e

      6ec8aac122bd4f6e   ②

      兩式相減得

      6ec8aac122bd4f6e

      則6ec8aac122bd4f6e,其中6ec8aac122bd4f6e

      所以,數(shù)列6ec8aac122bd4f6e為等差數(shù)列

 (Ⅱ)由6ec8aac122bd4f6e,結合(I)的結論知6ec8aac122bd4f6e

       于是,6ec8aac122bd4f6e

       6ec8aac122bd4f6e

       所以,原不等式成立

其他解法參照以上評分標準評分

 

 

本資料由《七彩教育網(wǎng)》www.7caiedu.cn 提供!


同步練習冊答案