題目列表(包括答案和解析)
(本小題共12分) 在平面直角坐標(biāo)系中,已知An(n,an)、Bn(n,bn)、Cn(n-1,0)(n∈N*),滿(mǎn)足向量與向量共線,且點(diǎn)An(n,an) (n∈N*)都在斜率為2的同一條直線l上. 若a1=-3,b1=10。1)求數(shù)列{an}與{ bn }的通項(xiàng)公式;
(2)求當(dāng)n取何值時(shí)△AnBnCn的面積Sn最小,并求出Sn的這個(gè)最小值。
(本小題共12分) 設(shè)數(shù)列的前項(xiàng)和為,已知, ().(Ⅰ)求證:數(shù)列為等差數(shù)列,并分別寫(xiě)出和關(guān)于的表達(dá)式;(Ⅱ)若,為數(shù)列前項(xiàng)和,求;(Ⅲ)是否存在自然數(shù),使得? 若存在,求的值;若不存在,說(shuō)明理由.
(本小題共12分)如圖,已知⊥平面,∥,是正三角形,,且是的中點(diǎn)
(1)求證:∥平面;
(2)求證:平面BCE⊥平面.
(本小題共12分)已知數(shù)列是等差數(shù)列,公差為2,1,=11,n+1=λn+bn.
(Ⅰ)若的值; (Ⅱ)在(Ⅰ)條件下,求數(shù)列{}的前n項(xiàng)和.
. (本小題共12分)已知橢圓E:的焦點(diǎn)坐標(biāo)為(),點(diǎn)M(,)在橢圓E上(1)求橢圓E的方程;(2)O為坐標(biāo)原點(diǎn),⊙的任意一條切線與橢圓E有兩個(gè)交點(diǎn),且,求⊙的半徑。
一. DCADB CCDAC
二.11. (,3)∪(3,4)12. 13. 2 14. 9 15. 1
16.解:(Ⅰ)由已知得:, ……………………… (3分)
又是△ABC的內(nèi)角,所以. ………………………………… (6分)
(2)由正弦定理:,………………9分
又因?yàn)?sub>,,又是△ABC的內(nèi)角,所以.………………12分
17.解:(I)由,得.??????????????4分
(II).????????????????7分
由,得,又,所以,??????????11分
即的取值范圍是.????????????????????????12分
18. 解: (1) .…………………………6分
(2)原式
.……………………………………………8分
19、解:(1)
… 2分
則的最小正周期, ???????????????????4分
且當(dāng)時(shí)單調(diào)遞增.
即為的單調(diào)遞增區(qū)間(寫(xiě)成開(kāi)區(qū)間不扣分).??7分
(2)當(dāng)時(shí),當(dāng),即時(shí).
所以.?????????????????11分
為的對(duì)稱(chēng)軸.??????????14分
20.解:(Ⅰ)∵,當(dāng)時(shí),.
∴在[1,3]上是增函數(shù).---------------------------------3分
∴當(dāng)時(shí),≤≤,即 -2≤≤26.
所以當(dāng)時(shí),當(dāng)時(shí),----4分
∴存在常數(shù)M=26,使得,都有≤M成立.
故函數(shù)是[1,3]上的有界函數(shù).---------------------------6分
(Ⅱ)∵. 由≤1,得≤1----------------8分
∴ ------------------------10分
令,顯然在上單調(diào)遞減,
則當(dāng)t→+∞時(shí),→1. ∴
令,顯然在上單調(diào)遞減,
則當(dāng)時(shí), ∴
∴0≤a≤1;
故所求a的取值范圍為0≤a≤1. -------------14分
21.解:(I) 由題意得 f (e) = pe--2ln e = qe- -2 ………… 1分
Þ (p-q) (e + ) = 0 ………… 2分
而 e + ≠0
∴ p = q ………… 3分
(II) 由 (I) 知 f (x) = px--2ln x
f’(x) = p + -= ………… 4分
令 h(x) = px 2-2x + p,要使 f (x) 在其定義域 (0,+¥) 內(nèi)為單調(diào)函數(shù),只需 h(x) 在 (0,+¥) 內(nèi)滿(mǎn)足:h(x)≥0 或 h(x)≤0 恒成立. ………… 5分
① 當(dāng) p = 0時(shí), h(x) = -2x,∵ x > 0,∴ h(x) < 0,∴ f’(x) = - < 0,
∴ f (x) 在 (0,+¥) 內(nèi)為單調(diào)遞減,故 p = 0適合題意. ………… 6分
② 當(dāng) p > 0時(shí),h(x) = px 2-2x + p,其圖象為開(kāi)口向上的拋物線,對(duì)稱(chēng)軸為 x = ∈(0,+¥),∴ h(x)min = p-
只需 p-≥1,即 p≥1 時(shí) h(x)≥0,f’(x)≥0
∴ f (x) 在 (0,+¥) 內(nèi)為單調(diào)遞增,
故 p≥1適合題意. ………… 7分
③ 當(dāng) p < 0時(shí),h(x) = px 2-2x + p,其圖象為開(kāi)口向下的拋物線,對(duì)稱(chēng)軸為 x = Ï (0,+¥)
只需 h(0)≤0,即 p≤0時(shí) h(x)≤0在 (0,+¥) 恒成立.
故 p < 0適合題意. ………… 8分
綜上可得,p≥1或 p≤0 ………… 9分
另解:(II) 由 (I) 知 f (x) = px--2ln x
f’(x) = p + -= p (1 + )- ………… 4分
要使 f (x) 在其定義域 (0,+¥) 內(nèi)為單調(diào)函數(shù),只需 f’(x) 在 (0,+¥) 內(nèi)滿(mǎn)足:f’(x)≥0 或 f’(x)≤0 恒成立. ………… 5分
由 f’(x)≥0 Û p (1 + )-≥0 Û p≥ Û p≥()max,x > 0
∵ ≤ = 1,且 x = 1 時(shí)等號(hào)成立,故 ()max = 1
∴ p≥1 ………… 7分
由 f’(x)≤0 Û p (1 + )-≤0 Û p≤ Û p≤()min,x > 0
而 > 0 且 x → 0 時(shí),→ 0,故 p≤0 ………… 8分
綜上可得,p≥1或 p≤0 ………… 9分
(III) ∵ g(x) = 在 [1,e] 上是減函數(shù)
∴ x = e 時(shí),g(x)min = 2,x = 1 時(shí),g(x)max = 2e
即 g(x) Î [2,2e] ………… 10分
① p≤0 時(shí),由 (II) 知 f (x) 在 [1,e] 遞減 Þ f (x)max = f (1) = 0 < 2,不合題意。 …11分
② 0 < p < 1 時(shí),由x Î [1,e] Þ x-≥0
∴ f (x) = p (x-)-2ln x≤x--2ln x
右邊為 f (x) 當(dāng) p = 1 時(shí)的表達(dá)式,故在 [1,e] 遞增
∴ f (x)≤x--2ln x≤e--2ln e = e--2 < 2,不合題意。 ………… 12分
③ p≥1 時(shí),由 (II) 知 f (x) 在 [1,e] 連續(xù)遞增,f (1) = 0 < 2,又g(x) 在 [1,e] 上是減函數(shù)
∴ 本命題 Û f (x)max > g(x)min = 2,x Î [1,e]
Þ f (x)max = f (e) = p (e-)-2ln e > 2
Þ p > ………… 13分
綜上,p 的取值范圍是 (,+¥) ………… 14分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com