另一方面.也可以利用等積轉(zhuǎn)化. 因?yàn)?所以..所以.點(diǎn)A到平的距離就等于點(diǎn)到平的距離.所以. 查看更多

 

題目列表(包括答案和解析)

(2012•浦東新區(qū)二模)在證明恒等式12+22+32+…+n2=
1
6
n(n+1)(2n+1)(n∈N*)
時(shí),可利用組合數(shù)表示n2,即n2=2
C
2
n+1
-
C
1
n
(n∈N*)
推得.類似地,在推導(dǎo)恒等式13+23+33+…+n3=[
n(n+1)
2
]2(n∈N*)
時(shí),也可以利用組合數(shù)表示n3推得.則n3=
6
C
3
n+1
+
C
1
n
6
C
3
n+1
+
C
1
n

查看答案和解析>>

在證明恒等式時(shí),可利用組合數(shù)表示n2,即推得.類似地,在推導(dǎo)恒等式時(shí),也可以利用組合數(shù)表示n3推得.則n3=   

查看答案和解析>>

解不等式:

【解析】本試題主要是考查了分段函數(shù)與絕對值不等式的綜合運(yùn)用。利用零點(diǎn)分段論 的思想,分為三種情況韜略得到解集即可。也可以利用分段函數(shù)圖像來解得。

解:方法一:零點(diǎn)分段討論:   方法二:數(shù)形結(jié)合法:

 

查看答案和解析>>

(2012•福建模擬)閱讀下面材料:
根據(jù)兩角和與差的正弦公式,有sin(α+β)=sinαcosβ+cosαsinβ------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
令α+β=A,α-β=B有α=
A+B
2
,β=
A-B
2

代入③得 sinA+sinB=2sin
A+B
2
cos
A-B
2

(Ⅰ)類比上述推證方法,根據(jù)兩角和與差的余弦公式,證明:cosA-cosB=-2sin
A+B
2
sin
A-B
2
;
(Ⅱ)若△ABC的三個(gè)內(nèi)角A,B,C滿足cos2A-cos2B=2sin2C,試判斷△ABC的形狀.
(提示:如果需要,也可以直接利用閱讀材料及(Ⅰ)中的結(jié)論)

查看答案和解析>>

一個(gè)函數(shù)f(x),如果對任意一個(gè)三角形,只要它的三邊長a,b,c都在f(x)的定義域內(nèi),就有f(a),f(b),f(c)也是某個(gè)三角形的三邊長,則稱f(x)為“保三角形函數(shù)”.
(Ⅰ)判斷f1(x)=
x
,f2(x)=x,f3(x)=x2中,哪些是“保三角形函數(shù)”,哪些不是,并說明理由;
(Ⅱ)如果g(x)是定義在R上的周期函數(shù),且值域?yàn)椋?,+∞),證明g(x)不是“保三角形函數(shù)”;
(Ⅲ)若函數(shù)F(x)=sinx,x∈(0,A)是“保三角形函數(shù)”,求A的最大值.
(可以利用公式sinx+siny=2sin
x+y
2
cos
x-y
2

查看答案和解析>>


同步練習(xí)冊答案