題目列表(包括答案和解析)
(本小題滿分14分)
設(shè)是定義在[-1,1]上的偶函數(shù),的圖象與的圖象關(guān)于直線對(duì)稱,且當(dāng)x∈[ 2,3 ] 時(shí), 222233.
(1)求的解析式;
(2)若在上為增函數(shù),求的取值范圍;
(3)是否存在正整數(shù),使的圖象的最高點(diǎn)落在直線上?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
(本小題滿分14分)
設(shè)關(guān)于的函數(shù),其中為上的常數(shù),若函數(shù)在處取得極大值.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)若函數(shù)的圖象與直線有兩個(gè)交點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅲ)設(shè)函數(shù),若對(duì)任意地,恒成立,求實(shí)數(shù)的取值范圍.
(本小題滿分14分)
已知:函數(shù)(),.
。1)若函數(shù)圖象上的點(diǎn)到直線距離的最小值為,求的值;
。2)關(guān)于的不等式的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)的取值范圍;
(3)對(duì)于函數(shù)與定義域上的任意實(shí)數(shù),若存在常數(shù),使得不等式和都成立,則稱直線為函數(shù)與的“分界線”。設(shè),,試探究與是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.
(本小題滿分14分)
已知關(guān)于x的函數(shù),其導(dǎo)函數(shù).
(1)如果函數(shù)試確定b、c的值;
(2)設(shè)當(dāng)時(shí),函數(shù)的圖象上任一點(diǎn)P處的切線斜率為k,若,求實(shí)數(shù)b的取值范圍。
(本小題滿分14分)某公司試銷一種成本單價(jià)為500元的新產(chǎn)品,規(guī)定試銷時(shí)銷售單價(jià)不低于成本單價(jià),又不高于800元.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似看作一次函數(shù)y=kx+b(k≠0),函數(shù)圖象如圖所示.
(1)根據(jù)圖象,求一次函數(shù)y=kx+b(k≠0)的表達(dá)式;
(2)設(shè)公司獲得的毛利潤(rùn)(毛利潤(rùn)=銷售總價(jià)-成本總價(jià))為S元.試問(wèn)銷售單價(jià)定為多少時(shí),該公司可獲得最大毛利潤(rùn)?最大毛利潤(rùn)是多少?此時(shí)的銷售量是多少?
題號(hào)
答案
1.解析:命題“”的否命題是:“”,故選C.
2.解析:由已知,得:,故選.
3.解析:若,則,解得.故選.
4.解析:由題意得,又.
故選.
5.解析:設(shè)成績(jī)?yōu)?sub>環(huán)的人數(shù)是,由平均數(shù)的概念,得:.
故選.
6.解析:是偶函數(shù);是指數(shù)函數(shù);是對(duì)數(shù)函數(shù).故選.
7.解析:①的三視圖均為正方形;②的三視圖中正視圖.側(cè)視圖為相同的等腰三角形,俯視圖為圓;④的三視圖中正視圖.側(cè)視圖為相同的等腰三角形,俯視圖為正方形.故選.
8.解析:程序的運(yùn)行結(jié)果是,選.
9.解析:的圖象先向左平移,橫坐標(biāo)變?yōu)樵瓉?lái)的倍.答案:.
10.解析:特殊值法:令,有.故選.
題號(hào)
11
12
13
14
15
答案
11.解析:.
12.解析:令,則,令,則,
同理得即當(dāng)時(shí),的值以為周期,
所以.
13.解析:由圖象知:當(dāng)函數(shù)的圖象過(guò)點(diǎn)時(shí),
取得最大值為2.
14. (坐標(biāo)系與參數(shù)方程選做題)解析:將極坐標(biāo)方程轉(zhuǎn)化成直角坐標(biāo)方程,圓上的動(dòng)點(diǎn)到直線的距離的最大值就是圓心到直線的距離再加上半徑.故填.
15. (幾何證明選講選做題)解析:連結(jié),
則在和中:,
且,所以,
故.
三.解答題:本大題共6小題,滿分80分.解答須寫出文字說(shuō)明.證明過(guò)程和演算步驟.
16.析:主要考察三角形中的邊角關(guān)系、向量的坐標(biāo)運(yùn)算、二次函數(shù)的最值.
解:(Ⅰ)∵,∴, ………………3分
又∵,∴. ……………………………………………5分
(Ⅱ) ……………………………………………6分
, ………………………8分
∵,∴. ……………10分
∴當(dāng)時(shí),取得最小值為. …………12分
17.析:主要考察立體幾何中的位置關(guān)系、體積.
解:(Ⅰ)證明:連結(jié),則//, …………1分
∵是正方形,∴.∵面,∴.
又,∴面. ………………4分
∵面,∴,
∴. …………………………………………5分
(Ⅱ)證明:作的中點(diǎn)F,連結(jié).
∵是的中點(diǎn),∴,
∴四邊形是平行四邊形,∴ . ………7分
∵是的中點(diǎn),∴,
又,∴.
∴四邊形是平行四邊形,//,
∵,,
∴平面面. …………………………………9分
又平面,∴面. ………………10分
(3). ……………………………11分
. ……………………………14分
18.析:主要考察事件的運(yùn)算、古典概型.
解:設(shè)“朋友乘火車、輪船、汽車、飛機(jī)來(lái)”分別為事件,則,,,,且事件之間是互斥的.
(Ⅰ)他乘火車或飛機(jī)來(lái)的概率為………4分
(Ⅱ)他乘輪船來(lái)的概率是,
所以他不乘輪船來(lái)的概率為. ………………8分
(Ⅲ)由于,
所以他可能是乘飛機(jī)來(lái)也可能是乘火車或汽車來(lái)的. …………………12分
19.析:主要考察函數(shù)的圖象與性質(zhì),導(dǎo)數(shù)的應(yīng)用.
解:(Ⅰ)由函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,得,………………1分
∴,∴. …………2分
∴,∴. ……………………………4分
∴,即. ……………………6分
∴. ……………………………………………………7分
(Ⅱ)由(Ⅰ)知,∴.
由 ,∴. …………………9分
0
+
0
ㄋ
極小
ㄊ
極大
ㄋ
∴. ………………………14分
20.析:主要考察直線.圓的方程,直線與圓的位置關(guān)系.
解:(Ⅰ)(法一)∵點(diǎn)在圓上, …………………………2分
∴直線的方程為,即. ……………………………5分
(法二)當(dāng)直線垂直軸時(shí),不符合題意. ……………………………2分
當(dāng)直線與軸不垂直時(shí),設(shè)直線的方程為,即.
則圓心到直線的距離,即:,解得,……4分
∴直線的方程為. ……………………………………………5分
(Ⅱ)設(shè)圓:,∵圓過(guò)原點(diǎn),∴.
∴圓的方程為.…………………………7分
∵圓被直線截得的弦長(zhǎng)為,∴圓心到直線:的距離:
. …………………………………………9分
整理得:,解得或. ……………………………10分
∵,∴. …………………………………………………………13分
∴圓:. ……………………………………14分
21.析:主要考察等差、等比數(shù)列的定義、式,求數(shù)列的和的方法.
解:(Ⅰ)設(shè)的公差為,則:,,
∵,,∴,∴. ………………………2分
∴. …………………………………………4分
(Ⅱ)當(dāng)時(shí),,由,得. …………………5分
當(dāng)時(shí),,,
∴,即. …………………………7分
∴. ……………………………………………………………8分
∴是以為首項(xiàng),為公比的等比數(shù)列. …………………………………9分
(Ⅲ)由(2)可知:. ……………………………10分
∴. …………………………………11分
∴.
∴.
∴
. ………………………………………13分
∴. …………………………………………………14分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com