(2)求證:∥平面. 查看更多

 

題目列表(包括答案和解析)

13、求證:若一直線與一個平面平行,則過平面內(nèi)的一點(diǎn)且與這條直線平行的直線必在此平面內(nèi).

查看答案和解析>>

10、求證兩兩相交而不過同一點(diǎn)的四條直線必在同一個平面內(nèi).

查看答案和解析>>

平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),給定兩點(diǎn)A(1,0),B(0,-2),點(diǎn)C滿足
OC
OA
OB
,其中α,β∈R,且α-2β=1.
(Ⅰ)求點(diǎn)C的軌跡方程;
(Ⅱ)設(shè)點(diǎn)C的軌跡與雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
交于兩點(diǎn)M,N,且以MN為直徑的圓過原點(diǎn),求證:
1
a2
-
1
b2
為定值.

查看答案和解析>>

平面內(nèi)有n條直線,其中無任何兩條平行,也無任何三條共點(diǎn),求證:這n條直線把平面分割成
12
(n2+n+2)塊.

查看答案和解析>>

31、平面內(nèi)有n個圓,其中每兩個圓都交于兩點(diǎn),且無三個圓交于一點(diǎn),求證:這n個圓將平面分成n2+n+2個部分.

查看答案和解析>>

一、選擇題:本大題每小題5分,滿分50分.

1

2

3

4

5

6

7

8

9

10

C

A

A

C

B

A

B

D

D

B

二、填空題:本大題共5小題,每小題5分,滿分20分,其中14,15題是選做題,考生只能選做一題,,若兩題全都做的,只計算前一題的得分.

11.(2,+∞)     12.    13. 4      14.     15. 9

三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程或演算步驟.

16.(本小題滿分12分)

解:(Ⅰ)∵ ,   ………………1分

  ………………4分

又 ∵  ,  ∴    …………………5分

(Ⅱ)由,…………………7分

   …………………………9分

由正弦定理 , 得 ……………………12分

17.(本小題滿分13分)

證明: (1) ∵ 三棱柱為直三棱柱,

         ∴  平面, ∴,

     ∵  , , ,

       ∴ ,

∴   , 又 ,

   ∴ 平面

∴      ……………………………………7分

   (2) 令的交點(diǎn)為, 連結(jié).

       ∵  的中點(diǎn), 的中點(diǎn), ∴ .

       又 ∵平面, 平面,

      ∴∥平面.    ………………………13分

18.(本小題滿分13分)

解: (1) 由題意得  , 即 ,…………………1分

        當(dāng)時 , ,…………4分

         當(dāng)時, , ………………5分

         ∴  , ……………………6分

     (2) 由(1)得,…………………8分

           ∴ 

                   . ……………………11分

          因此,使得成立的必須且只需滿足, 即,

故滿足要求的的最小正整數(shù)………………13分

19.(本小題滿分14分)

解: (1)設(shè)圓的圓心為,

依題意圓的半徑     ……………… 2分

∵ 圓軸上截得的弦的長為.

  

故    ………………………… 4分

 ∴   

    ∴  圓的圓心的軌跡方程為 ………………… 6分

(2)    ∵   ,  ∴   ……………………… 9分

令圓的圓心為, 則有 () ,…………… 10分

又  ∵   …………………… 11分

∴    ……………………… 12分

∴       ……………………… 13分

∴   圓的方程為   …………………… 14分

21.(本小題滿分14分)

解:(Ⅰ)由已知

解得,   …………………2分

∴   ,     ∴     …………4分

∴  . ……………………5分

   (Ⅱ)在(Ⅰ)條件下,在區(qū)間恒成立,即在區(qū)間恒成立,

從而在區(qū)間上恒成立,…………………8分

令函數(shù),

則函數(shù)在區(qū)間上是減函數(shù),且其最小值,

的取值范圍為…………………………10分

   (Ⅲ)由,得,

∵       ∴,………………11分

設(shè)方程的兩根為,則,,

∵  ,  ∴  ,    ∴,

∵  ,  ∴  ,

      ∴  ……………14分

21.(本小題滿分14分)

解:  (Ⅰ)解:當(dāng)時,,……………1分

,則.…………………3分

所以,曲線在點(diǎn)處的切線方程為

.……………4分

(Ⅱ)解:.…………6分

由于,以下分兩種情況討論.

(1)當(dāng)時,令,得到,,

當(dāng)變化時,的變化情況如下表:

0

0

極小值

極大值

所以在區(qū)間,內(nèi)為減函數(shù),在區(qū)間內(nèi)為增函數(shù)

故函數(shù)在點(diǎn)處取得極小值,且,

函數(shù)在點(diǎn)處取得極大值,且.…………………10分

(2)當(dāng)時,令,得到,

當(dāng)變化時,的變化情況如下表:

0

0

極大值

極小值

所以在區(qū)間,內(nèi)為增函數(shù),在區(qū)間內(nèi)為減函數(shù).

函數(shù)處取得極大值,且

函數(shù)處取得極小值,且.………………14分

 

 

 


同步練習(xí)冊答案