(Ⅱ)當時.求函數(shù)的單調區(qū)間與極值.廣東省深圳外國語學校2008屆高三第三次質量檢測 查看更多

 

題目列表(包括答案和解析)

 

已知函數(shù)。

(1)當時,求函數(shù)的單調區(qū)間和極值;

(2)當時,若對任意,均有,求實數(shù)的取值范圍;

(3)若,對任意、,且,試比較 的大小。

 

 

 

 

 

查看答案和解析>>

已知函數(shù)

(Ⅰ)求函數(shù)的單調區(qū)間和極值;

(Ⅱ)已知函數(shù)的圖象與函數(shù)的圖象關于直線對稱,證明當時,

(Ⅲ)如果,且,證明

 

 

查看答案和解析>>

 

已知函數(shù)

(Ⅰ)求函數(shù)的單調區(qū)間和極值;

(Ⅱ)已知函數(shù)的圖象與函數(shù)的圖象關于直線對稱,證明當時,

(Ⅲ)如果,且,證明

 

 

查看答案和解析>>

設函數(shù).

(1) 求的單調區(qū)間與極值;

(2)是否存在實數(shù),使得對任意的,當時恒有成立.若存在,求的范圍,若不存在,請說明理由.

 

查看答案和解析>>

已知函數(shù),(1)求函數(shù)的單調區(qū)間和函數(shù)的極值;

(2)當時,求函數(shù)的最大值與最小值.

 

查看答案和解析>>

一、選擇題:本大題每小題5分,滿分50分.

1

2

3

4

5

6

7

8

9

10

C

A

A

C

B

A

B

D

D

B

二、填空題:本大題共5小題,每小題5分,滿分20分,其中14,15題是選做題,考生只能選做一題,,若兩題全都做的,只計算前一題的得分.

11.(2,+∞)     12.    13. 4      14.     15. 9

三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程或演算步驟.

16.(本小題滿分12分)

解:(Ⅰ)∵ ,   ………………1分

  ………………4分

又 ∵  ,  ∴    …………………5分

(Ⅱ)由,…………………7分

   …………………………9分

由正弦定理 , 得 ……………………12分

17.(本小題滿分13分)

證明: (1) ∵ 三棱柱為直三棱柱,

         ∴  平面, ∴,

     ∵  , , ,

       ∴ ,

∴   , 又 ,

   ∴ 平面

∴      ……………………………………7分

   (2) 令的交點為, 連結.

       ∵  的中點, 的中點, ∴ .

       又 ∵平面, 平面,

      ∴∥平面.    ………………………13分

18.(本小題滿分13分)

解: (1) 由題意得  , 即 ,…………………1分

        當時 , ,…………4分

         當時, , ………………5分

         ∴  , ……………………6分

     (2) 由(1)得,…………………8分

           ∴ 

                   . ……………………11分

          因此,使得成立的必須且只需滿足, 即,

故滿足要求的的最小正整數(shù)………………13分

19.(本小題滿分14分)

解: (1)設圓的圓心為,

依題意圓的半徑     ……………… 2分

∵ 圓軸上截得的弦的長為.

  

故    ………………………… 4分

 ∴   

    ∴  圓的圓心的軌跡方程為 ………………… 6分

(2)    ∵   ,  ∴   ……………………… 9分

令圓的圓心為, 則有 () ,…………… 10分

又  ∵   …………………… 11分

∴    ……………………… 12分

∴       ……………………… 13分

∴   圓的方程為   …………………… 14分

21.(本小題滿分14分)

解:(Ⅰ)由已知

解得,,   …………………2分

∴   ,     ∴     …………4分

∴  . ……………………5分

   (Ⅱ)在(Ⅰ)條件下,在區(qū)間恒成立,即在區(qū)間恒成立,

從而在區(qū)間上恒成立,…………………8分

令函數(shù),

則函數(shù)在區(qū)間上是減函數(shù),且其最小值,

的取值范圍為…………………………10分

   (Ⅲ)由,得

∵       ∴,………………11分

設方程的兩根為,則,,

∵  ,  ∴  ,    ∴,

∵  ,  ∴  ,

      ∴  ……………14分

21.(本小題滿分14分)

解:  (Ⅰ)解:當時,,,……………1分

,則.…………………3分

所以,曲線在點處的切線方程為,

.……………4分

(Ⅱ)解:.…………6分

由于,以下分兩種情況討論.

(1)當時,令,得到,

變化時,的變化情況如下表:

0

0

極小值

極大值

所以在區(qū)間,內為減函數(shù),在區(qū)間內為增函數(shù)

故函數(shù)在點處取得極小值,且,

函數(shù)在點處取得極大值,且.…………………10分

(2)當時,令,得到,

變化時,的變化情況如下表:

0

0

極大值

極小值

所以在區(qū)間,內為增函數(shù),在區(qū)間內為減函數(shù).

函數(shù)處取得極大值,且

函數(shù)處取得極小值,且.………………14分

 

 

 


同步練習冊答案