若a2+b2=(a-b)2+( 。┏闪ⅲ瑒t括號內(nèi)的式子是( 。
A.2abB.4abC.6abD.8ab
相關習題

科目:初中數(shù)學 來源: 題型:

若a2+b2=(a-b)2+( 。┏闪,則括號內(nèi)的式子是( 。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若a2+b2=(a-b)2+( 。┏闪ⅲ瑒t括號內(nèi)的式子是( 。
A.2abB.4abC.6abD.8ab

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

若a2+b2=(a-b)2+成立,則括號內(nèi)的式子是


  1. A.
    2ab
  2. B.
    4ab
  3. C.
    6ab
  4. D.
    8ab

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

閱讀下列材料,按要求回答問題.
(1)觀察下面兩塊三角尺,它們有一個共同的性質(zhì):∠A=2∠B,我們由此出發(fā)來進行思考.
在圖(1)中作斜邊上的高CD,由于∠B=30°,可知c=2b,∠ACD=30°,于是AD=數(shù)學公式,BD=c-數(shù)學公式,由于△CDB∽△ACB,可知,即a2=c•BD.同理b2=c•AD,于是a2-b2=c(BD-AD)=c(c-b)=bc.對于圖(2),由勾股定理有a2=b2+c2,由于b=c,故也有a2-b2=bc.
在△ABC中,如果一個內(nèi)角等于另一個內(nèi)角的2倍,我們稱這樣的三角形為倍角三角形,兩塊三角尺都是特殊的倍角三角形,對于任意倍角三角形,上面的結(jié)論仍然成立嗎?我們暫時把設想作為一種猜測:
如圖(3),在△ABC中,若∠CAB=2∠ABC,則a2-b2=bc.
在上述由三角尺的性質(zhì)到“猜測”這一認識過程中,用到了下列四種數(shù)學思想方法中的哪一種選出一個正確的并將其序號填在括號內(nèi)
①分類的思想方法②轉(zhuǎn)化的思想方法③由特殊到一般的思想方法④數(shù)形結(jié)合的思想方法
(2)這個猜測是否正確,請證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列材料,按要求回答問題.
(1)觀察下面兩塊三角尺,它們有一個共同的性質(zhì):∠A=2∠B,我們由此出發(fā)來進行思考.
在圖(1)中作斜邊上的高CD,由于∠B=30°,可知c=2b,∠ACD=30°,于是AD=
b
2
,BD=c-
b
2
,由于△CDB∽△ACB,可知,即a2=c•BD.同理b2=c•AD,于是a2-b2=c(BD-AD)=c(c-b)=bc.對于圖(2),由勾股定理有a2=b2+c2,由于b=c,故也有a2-b2=bc.
在△ABC中,如果一個內(nèi)角等于另一個內(nèi)角的2倍,我們稱這樣的三角形為倍角三角形,兩塊三角尺都是特殊的倍角三角形,對于任意倍角三角形,上面的結(jié)論仍然成立嗎?我們暫時把設想作為一種猜測:
如圖(3),在△ABC中,若∠CAB=2∠ABC,則a2-b2=bc.
在上述由三角尺的性質(zhì)到“猜測”這一認識過程中,用到了下列四種數(shù)學思想方法中的哪一種選出一個正確的并將其序號填在括號內(nèi)( 。
①分類的思想方法②轉(zhuǎn)化的思想方法③由特殊到一般的思想方法④精英家教網(wǎng)數(shù)形結(jié)合的思想方法
(2)這個猜測是否正確,請證明.

查看答案和解析>>

科目:初中數(shù)學 來源:數(shù)學教研室 題型:044

閱讀下列材料,按要求解答問題。

1)觀察下面兩塊三角尺,它們有一個共同的性質(zhì):∠A2B,我們由此出發(fā)來進

行思考。

在圖(1)中,作斜邊AB上的高CD,由于∠B30°,可知c2b,于是AD,

BDc。由于△CDB∽△ACB,可知,即a2BD。

同理b2c·AD。于是a2b2cBDAD)=c[(c]=ccb

c2bb

bc。對于圖(2),由勾股定理有a2b2c2,由于bc,故有a2b2bc

這兩塊三角尺都具有性質(zhì)a2b2bc。

在△ABC中,如果一個內(nèi)角等于另一個內(nèi)角的2倍,我們就稱這種三角形為倍角三角   

形。兩塊三角尺就都是特殊的倍角三角形。對于任意的倍角三角形,上面的性質(zhì)仍然

成立嗎?暫時把我們的設想作為一個猜測:

如圖(3),在△ABC中,若∠CAB2ABC,則a2b2bc。

在上述由三角尺的性質(zhì)到猜想這一認識過程中,用到了下列四種數(shù)學思想方法中的哪  

一種?選出一個正確的并將其序號填在括號內(nèi)………………………………………( 

①分類的思想方法  ②轉(zhuǎn)化的思想方法  ③由特殊到一般的思想方法  ④數(shù)形結(jié)合的

思想方法

2)這個猜測是否正確?請證明。

 

查看答案和解析>>


同步練習冊答案