△ABC的頂點(diǎn)坐標(biāo)為(-2,5),若將△ABC沿x軸平移5個(gè)單位,則A點(diǎn)坐標(biāo)變?yōu)椋ā 。?table style="margin-left:0px;width:650px;">
A.(3,5)B.(3,0)或(-7,0)
C.(3,5)或(-7,5)D.(-2,0)或(-2,10)
C
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,Rt△ABC的頂點(diǎn)坐標(biāo)分別為A(0,數(shù)學(xué)公式),B(數(shù)學(xué)公式數(shù)學(xué)公式),C(1,0),∠ABC=90°,BC與y軸的交點(diǎn)為D,D點(diǎn)坐標(biāo)為(0,數(shù)學(xué)公式),以點(diǎn)D為頂點(diǎn)y軸為對(duì)稱軸的拋物線過(guò)點(diǎn)B.
(1)求該拋物線的解析式.
(2)將△ABC沿AC折疊后得到點(diǎn)B的對(duì)應(yīng)點(diǎn)B',求證:四邊形AOCB'是矩形,并判斷點(diǎn)B'是否在(1)的拋物線上.
(3)延長(zhǎng)BA交拋物線于點(diǎn)E,在線段BE上取一點(diǎn)P,過(guò)點(diǎn)P作x軸的垂線,交拋物線于點(diǎn)F,是否存在這樣的點(diǎn)P,使四邊形PADF是平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第34章《二次函數(shù)》中考題集(36):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,Rt△ABC的頂點(diǎn)坐標(biāo)分別為A(0,),B(,),C(1,0),∠ABC=90°,BC與y軸的交點(diǎn)為D,D點(diǎn)坐標(biāo)為(0,),以點(diǎn)D為頂點(diǎn)y軸為對(duì)稱軸的拋物線過(guò)點(diǎn)B.
(1)求該拋物線的解析式.
(2)將△ABC沿AC折疊后得到點(diǎn)B的對(duì)應(yīng)點(diǎn)B',求證:四邊形AOCB'是矩形,并判斷點(diǎn)B'是否在(1)的拋物線上.
(3)延長(zhǎng)BA交拋物線于點(diǎn)E,在線段BE上取一點(diǎn)P,過(guò)點(diǎn)P作x軸的垂線,交拋物線于點(diǎn)F,是否存在這樣的點(diǎn)P,使四邊形PADF是平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第6章《二次函數(shù)》中考題集(36):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,Rt△ABC的頂點(diǎn)坐標(biāo)分別為A(0,),B(),C(1,0),∠ABC=90°,BC與y軸的交點(diǎn)為D,D點(diǎn)坐標(biāo)為(0,),以點(diǎn)D為頂點(diǎn)y軸為對(duì)稱軸的拋物線過(guò)點(diǎn)B.
(1)求該拋物線的解析式.
(2)將△ABC沿AC折疊后得到點(diǎn)B的對(duì)應(yīng)點(diǎn)B',求證:四邊形AOCB'是矩形,并判斷點(diǎn)B'是否在(1)的拋物線上.
(3)延長(zhǎng)BA交拋物線于點(diǎn)E,在線段BE上取一點(diǎn)P,過(guò)點(diǎn)P作x軸的垂線,交拋物線于點(diǎn)F,是否存在這樣的點(diǎn)P,使四邊形PADF是平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第27章《二次函數(shù)》中考題集(35):27.3 實(shí)踐與探索(解析版) 題型:解答題

如圖,Rt△ABC的頂點(diǎn)坐標(biāo)分別為A(0,),B(,),C(1,0),∠ABC=90°,BC與y軸的交點(diǎn)為D,D點(diǎn)坐標(biāo)為(0,),以點(diǎn)D為頂點(diǎn)y軸為對(duì)稱軸的拋物線過(guò)點(diǎn)B.
(1)求該拋物線的解析式.
(2)將△ABC沿AC折疊后得到點(diǎn)B的對(duì)應(yīng)點(diǎn)B',求證:四邊形AOCB'是矩形,并判斷點(diǎn)B'是否在(1)的拋物線上.
(3)延長(zhǎng)BA交拋物線于點(diǎn)E,在線段BE上取一點(diǎn)P,過(guò)點(diǎn)P作x軸的垂線,交拋物線于點(diǎn)F,是否存在這樣的點(diǎn)P,使四邊形PADF是平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第26章《二次函數(shù)》中考題集(33):26.3 實(shí)際問(wèn)題與二次函數(shù)(解析版) 題型:解答題

如圖,Rt△ABC的頂點(diǎn)坐標(biāo)分別為A(0,),B(,),C(1,0),∠ABC=90°,BC與y軸的交點(diǎn)為D,D點(diǎn)坐標(biāo)為(0,),以點(diǎn)D為頂點(diǎn)y軸為對(duì)稱軸的拋物線過(guò)點(diǎn)B.
(1)求該拋物線的解析式.
(2)將△ABC沿AC折疊后得到點(diǎn)B的對(duì)應(yīng)點(diǎn)B',求證:四邊形AOCB'是矩形,并判斷點(diǎn)B'是否在(1)的拋物線上.
(3)延長(zhǎng)BA交拋物線于點(diǎn)E,在線段BE上取一點(diǎn)P,過(guò)點(diǎn)P作x軸的垂線,交拋物線于點(diǎn)F,是否存在這樣的點(diǎn)P,使四邊形PADF是平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第2章《二次函數(shù)》中考題集(37):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,Rt△ABC的頂點(diǎn)坐標(biāo)分別為A(0,),B(),C(1,0),∠ABC=90°,BC與y軸的交點(diǎn)為D,D點(diǎn)坐標(biāo)為(0,),以點(diǎn)D為頂點(diǎn)y軸為對(duì)稱軸的拋物線過(guò)點(diǎn)B.
(1)求該拋物線的解析式.
(2)將△ABC沿AC折疊后得到點(diǎn)B的對(duì)應(yīng)點(diǎn)B',求證:四邊形AOCB'是矩形,并判斷點(diǎn)B'是否在(1)的拋物線上.
(3)延長(zhǎng)BA交拋物線于點(diǎn)E,在線段BE上取一點(diǎn)P,過(guò)點(diǎn)P作x軸的垂線,交拋物線于點(diǎn)F,是否存在這樣的點(diǎn)P,使四邊形PADF是平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(33):20.5 二次函數(shù)的一些應(yīng)用(解析版) 題型:解答題

如圖,Rt△ABC的頂點(diǎn)坐標(biāo)分別為A(0,),B(,),C(1,0),∠ABC=90°,BC與y軸的交點(diǎn)為D,D點(diǎn)坐標(biāo)為(0,),以點(diǎn)D為頂點(diǎn)y軸為對(duì)稱軸的拋物線過(guò)點(diǎn)B.
(1)求該拋物線的解析式.
(2)將△ABC沿AC折疊后得到點(diǎn)B的對(duì)應(yīng)點(diǎn)B',求證:四邊形AOCB'是矩形,并判斷點(diǎn)B'是否在(1)的拋物線上.
(3)延長(zhǎng)BA交拋物線于點(diǎn)E,在線段BE上取一點(diǎn)P,過(guò)點(diǎn)P作x軸的垂線,交拋物線于點(diǎn)F,是否存在這樣的點(diǎn)P,使四邊形PADF是平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第2章《二次函數(shù)》中考題集(33):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,Rt△ABC的頂點(diǎn)坐標(biāo)分別為A(0,),B(,),C(1,0),∠ABC=90°,BC與y軸的交點(diǎn)為D,D點(diǎn)坐標(biāo)為(0,),以點(diǎn)D為頂點(diǎn)y軸為對(duì)稱軸的拋物線過(guò)點(diǎn)B.
(1)求該拋物線的解析式.
(2)將△ABC沿AC折疊后得到點(diǎn)B的對(duì)應(yīng)點(diǎn)B',求證:四邊形AOCB'是矩形,并判斷點(diǎn)B'是否在(1)的拋物線上.
(3)延長(zhǎng)BA交拋物線于點(diǎn)E,在線段BE上取一點(diǎn)P,過(guò)點(diǎn)P作x軸的垂線,交拋物線于點(diǎn)F,是否存在這樣的點(diǎn)P,使四邊形PADF是平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(33):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,Rt△ABC的頂點(diǎn)坐標(biāo)分別為A(0,),B(,),C(1,0),∠ABC=90°,BC與y軸的交點(diǎn)為D,D點(diǎn)坐標(biāo)為(0,),以點(diǎn)D為頂點(diǎn)y軸為對(duì)稱軸的拋物線過(guò)點(diǎn)B.
(1)求該拋物線的解析式.
(2)將△ABC沿AC折疊后得到點(diǎn)B的對(duì)應(yīng)點(diǎn)B',求證:四邊形AOCB'是矩形,并判斷點(diǎn)B'是否在(1)的拋物線上.
(3)延長(zhǎng)BA交拋物線于點(diǎn)E,在線段BE上取一點(diǎn)P,過(guò)點(diǎn)P作x軸的垂線,交拋物線于點(diǎn)F,是否存在這樣的點(diǎn)P,使四邊形PADF是平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖將△ABC沿x軸的正方向平移4單位得到△A′B′O′,再繞O′點(diǎn)按順時(shí)針旋轉(zhuǎn)90°得到△A″B″O″,若A的坐標(biāo)為(-2,3),B點(diǎn)坐標(biāo)為(-3,0);
①在圖中畫△A′B′O′和△A″B″O″;
②直接寫出A′和A″點(diǎn)的坐標(biāo);
③△ABO的頂點(diǎn)A在變換過(guò)程中所經(jīng)過(guò)的路徑長(zhǎng)為多少?

查看答案和解析>>


同步練習(xí)冊(cè)答案