精英家教網 > 初中數學 > 題目詳情
以下列長度的線段為邊,可以作一個三角形的是( 。
A.5cm、10cm、15cmB.5cm、10cm、20cm
C.10cm、15cm、20cmD.5cm、20cm、25cm
相關習題

科目:初中數學 來源: 題型:

以下列長度的線段為邊,可以作一個三角形的是( 。

查看答案和解析>>

科目:初中數學 來源:2012年蘇教版初中數學七年級下 7.4認識三角形練習卷(解析版) 題型:選擇題

以下列長度的線段為邊,可以作一個三角形的是(   )

A.5㎝、10㎝、15㎝;         B.5㎝、10㎝、20㎝;

C.10㎝、15㎝、20㎝;        D.5㎝、20㎝、25㎝.

 

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

以下列長度的線段為邊,可以作一個三角形的是( 。
A.5cm、10cm、15cmB.5cm、10cm、20cm
C.10cm、15cm、20cmD.5cm、20cm、25cm

查看答案和解析>>

科目:初中數學 來源: 題型:單選題

以下列長度的線段為邊,可以作一個三角形的是


  1. A.
    5cm、10cm、15cm
  2. B.
    5cm、10cm、20cm
  3. C.
    10cm、15cm、20cm
  4. D.
    5cm、20cm、25cm

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

閱讀下面材料:
小明遇到這樣一個問題:如圖1,△ABO和△CDO均為等腰直角三角形,∠AOB=∠COD=90°.若△BOC的面積為1,試求以AD、BC、OC+OD的長度為三邊長的三角形的面積.

小明是這樣思考的:要解決這個問題,首先應想辦法移動這些分散的線段,構造一個三角形,再計算其面積即可.他利用圖形變換解決了這個問題,其解題思路是延長CO到E,使得OE=CO,連接BE,可證△OBE≌△OAD,從而得到的△BCE即是以AD、BC、OC+OD的長度為三邊長的三角形(如圖2).
請你回答:圖2中△BCE的面積等于______.
請你嘗試用平移、旋轉、翻折的方法,解決下列問題:
如圖3,已知△ABC,分別以AB、AC、BC為邊向外作正方形ABDE、AGFC、BCHI,連接EG、FH、ID.
(1)在圖3中利用圖形變換畫出并指明以EG、FH、ID的長度為三邊長的一個三角形(保留畫圖痕跡);
(2)若△ABC的面積為1,則以EG、FH、ID的長度為三邊長的三角形的面積等于______.

查看答案和解析>>

科目:初中數學 來源:江蘇期中題 題型:解答題

閱讀下面材料:
小偉遇到這樣一個問題:如圖1,在梯形ABCD中,AD∥BC,對角線AC、BD相交于點O,若梯形ABCD的面積為1,試求以AC、BD、AD+BC的長度為三邊長的三角形的面積;
小偉是這樣思考的:要想解決這個問題,首先應想辦法移動這些分散的線段,構造一個三角形,再計算其面積即可,他先后嘗試了翻折、旋轉、平移的方法,發(fā)現通過平移可以解決這個問題,他的方法是過點D作AC的平行線交BC的延長線于點E,得到的△BDE即是以AC、BD、AD+BC的長度為三邊長的三角形(如圖2),請你回答:圖2中△BDE的面積等于_____;
參考小偉同學的思考問題的方法,解決下列問題:
如圖3,△ABC的三條中線分別為AD、BE、CF。
(1)在圖3中利用圖形變換畫出并指明以AD、BE、CF 的長度為三邊長的一個三角形(保留畫圖痕跡);
(2)若△ABC的面積為1,則以AD、BE、CF的長度為三邊長的三角形的面積等于_____。

查看答案和解析>>

科目:初中數學 來源:2013年天津市南開區(qū)中考數學一模試卷(解析版) 題型:填空題

閱讀下面材料:小明遇到這樣一個問題:如圖1,△ABO和△CBO均為等腰直角三角形,∠AOB=∠COD=90°,若△BOC的面積為1,試求以AD、BC、OC+OD的長度為三邊長的三角形的面積.小明是這樣思考的:要解決這個問題,首先應想辦法移動這些分散的線段,構成一個三角形,在計算其面積即可.他利用圖形變換解決了這個問題,其解題思路是延長CO到E,使得OE=CO,連接BE,可證△OBE≌△OAD,從而等到的△BCE即時以AD、BC、OC+OD的長度為三邊長的三角形(如圖2).
(I)請你回答:圖2中△BCE的面積等于   
(II)請你嘗試用平移、旋轉、翻折的方法,解決下列問題:如圖3,已知ABC,分別以AB、AC、BC為邊向外作正方形ABDE、AGFC、BCHI,連接EG、FH、ID.若△ABC的面積為1,則以EG、FH、ID的長度為三邊長的三角形的面積等于   

查看答案和解析>>

科目:初中數學 來源:2012年5月中考數學模擬試卷(42)(解析版) 題型:解答題

閱讀下面材料:
小明遇到這樣一個問題:如圖1,△ABO和△CDO均為等腰直角三角形,∠AOB=∠COD=90°.若△BOC的面積為1,試求以AD、BC、OC+OD的長度為三邊長的三角形的面積.

小明是這樣思考的:要解決這個問題,首先應想辦法移動這些分散的線段,構造一個三角形,再計算其面積即可.他利用圖形變換解決了這個問題,其解題思路是延長CO到E,使得OE=CO,連接BE,可證△OBE≌△OAD,從而得到的△BCE即是以AD、BC、OC+OD的長度為三邊長的三角形(如圖2).
請你回答:圖2中△BCE的面積等于______.
請你嘗試用平移、旋轉、翻折的方法,解決下列問題:
如圖3,已知△ABC,分別以AB、AC、BC為邊向外作正方形ABDE、AGFC、BCHI,連接EG、FH、ID.
(1)在圖3中利用圖形變換畫出并指明以EG、FH、ID的長度為三邊長的一個三角形(保留畫圖痕跡);
(2)若△ABC的面積為1,則以EG、FH、ID的長度為三邊長的三角形的面積等于______.

查看答案和解析>>

科目:初中數學 來源:2012年北京市海淀區(qū)中考數學一模試卷(解析版) 題型:解答題

閱讀下面材料:
小明遇到這樣一個問題:如圖1,△ABO和△CDO均為等腰直角三角形,∠AOB=∠COD=90°.若△BOC的面積為1,試求以AD、BC、OC+OD的長度為三邊長的三角形的面積.

小明是這樣思考的:要解決這個問題,首先應想辦法移動這些分散的線段,構造一個三角形,再計算其面積即可.他利用圖形變換解決了這個問題,其解題思路是延長CO到E,使得OE=CO,連接BE,可證△OBE≌△OAD,從而得到的△BCE即是以AD、BC、OC+OD的長度為三邊長的三角形(如圖2).
請你回答:圖2中△BCE的面積等于______.
請你嘗試用平移、旋轉、翻折的方法,解決下列問題:
如圖3,已知△ABC,分別以AB、AC、BC為邊向外作正方形ABDE、AGFC、BCHI,連接EG、FH、ID.
(1)在圖3中利用圖形變換畫出并指明以EG、FH、ID的長度為三邊長的一個三角形(保留畫圖痕跡);
(2)若△ABC的面積為1,則以EG、FH、ID的長度為三邊長的三角形的面積等于______.

查看答案和解析>>

科目:初中數學 來源:2012年5月中考數學模擬試卷(25)(解析版) 題型:解答題

閱讀下面材料:
小明遇到這樣一個問題:如圖1,△ABO和△CDO均為等腰直角三角形,∠AOB=∠COD=90°.若△BOC的面積為1,試求以AD、BC、OC+OD的長度為三邊長的三角形的面積.

小明是這樣思考的:要解決這個問題,首先應想辦法移動這些分散的線段,構造一個三角形,再計算其面積即可.他利用圖形變換解決了這個問題,其解題思路是延長CO到E,使得OE=CO,連接BE,可證△OBE≌△OAD,從而得到的△BCE即是以AD、BC、OC+OD的長度為三邊長的三角形(如圖2).
請你回答:圖2中△BCE的面積等于______.
請你嘗試用平移、旋轉、翻折的方法,解決下列問題:
如圖3,已知△ABC,分別以AB、AC、BC為邊向外作正方形ABDE、AGFC、BCHI,連接EG、FH、ID.
(1)在圖3中利用圖形變換畫出并指明以EG、FH、ID的長度為三邊長的一個三角形(保留畫圖痕跡);
(2)若△ABC的面積為1,則以EG、FH、ID的長度為三邊長的三角形的面積等于______.

查看答案和解析>>


同步練習冊答案