設(shè)命題P:函數(shù)f(x)=x+(a>0)在區(qū)間(1,2)上單調(diào)遞增;命題Q:不等式|x-1|-|x+2|<4a對任意x∈R都成立.若“P或Q”是真命題,“P且Q”是假命題,則實數(shù)a的取值范圍是( 。A.<a≤1 | B.≤a<1 | C.0<a≤或a>1 | D.0<a<或a≥1 |
|
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)命題P:函數(shù)f(x)═x+
(a>0)在區(qū)間(1,2)上單調(diào)遞增;命題Q:不等式|x-1|-|x+2|<4a對任意x∈R都成立.若“P或Q”是真命題,“P且Q”是假命題,則實數(shù)a的取值范圍是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:東營一模
題型:單選題
設(shè)命題P:函數(shù)f(x)=
x+(a>0)在區(qū)間(1,2)上單調(diào)遞增;命題Q:不等式|x-1|-|x+2|<4a對任意x∈R都成立.若“P或Q”是真命題,“P且Q”是假命題,則實數(shù)a的取值范圍是( )
A.<a≤1 | B.≤a<1 |
C.0<a≤或a>1 | D.0<a<或a≥1 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)命題p:“函數(shù)f(x)=ax+1在(-1,1)上存在一個零點”,命題q:“函數(shù)f(x)=x2-2ax在(1,+∞)上單調(diào)遞增”.若“p∨q”為真,“p∧q”為假,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)命題p:函數(shù)f(x)=x3-ax-1在區(qū)間[-1,1]上單調(diào)遞減;命題q:函數(shù)y=ln(x2+ax+1)的值域是R.如果命題p或q為真命題,p且q為假命題,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)命題p:函數(shù)f(x)=x3-ax-1在區(qū)間[-1,1]上單調(diào)遞減;命題q:函數(shù)y=ln(x2+ax+1)的值域是R.如果命題p或q為真命題,p且q為假命題,則實數(shù)a的取值范圍是( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)命題p:函數(shù)f(x)=x3-ax-1在區(qū)間[-1,1]上單調(diào)遞減;命題q:函數(shù)y=ln(x2+ax+1)的定義域為R.若命題p或q為假命題,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)命題p:函數(shù)f(x)=x2-2ax-1在區(qū)間[-1,1]內(nèi)不單調(diào);命題q:當(dāng)x∈(0,+∞)時,不等式x2-ax+1>0恒成立.如果命題p∨q為真命題,p∧q為假命題,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:解答題
設(shè)命題p:函數(shù)f(x)=x3-ax-1在區(qū)間[-1,1]上單調(diào)遞減;命題q:函數(shù)y=ln(x2+ax+1)的值域是R.如果命題p或q為真命題,p且q為假命題,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)命題p:函數(shù)f(x)=x3-ax-1在區(qū)間[-1,1]上單調(diào)遞減;命題q:函數(shù)y=ln(x2+ax+1)的值域是R.如果命題p或q為真命題,p且q為假命題,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)命題p:“函數(shù)f(x)=ax+1在(-1,1)上存在一個零點”,命題q:“函數(shù)f(x)=x2-2ax在(1,+∞)上單調(diào)遞增”.若“p∨q”為真,“p∧q”為假,求實數(shù)a的取值范圍.
查看答案和解析>>