已知函數(shù)f(x)=lnx,則函數(shù)g(x)=f(x)-f′(x)的零點(diǎn)所在的區(qū)間是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)
B
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:昌平區(qū)一模 題型:單選題

已知函數(shù)f(x)=lnx,則函數(shù)g(x)=f(x)-f′(x)的零點(diǎn)所在的區(qū)間是( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年天津一中高三(上)第四次月考數(shù)學(xué)試卷(理)(解析版) 題型:選擇題

已知函數(shù)f(x)=lnx,則函數(shù)g(x)=f(x)-f′(x)的零點(diǎn)所在的區(qū)間是( )
A.(0,1)
B.(1,2)
C.(2,3)
D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年浙江省杭州市重點(diǎn)高中高考命題比賽數(shù)學(xué)參賽試卷05(解析版) 題型:選擇題

已知函數(shù)f(x)=lnx,則函數(shù)g(x)=f(x)-f′(x)的零點(diǎn)所在的區(qū)間是( )
A.(0,1)
B.(1,2)
C.(2,3)
D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知函數(shù)f(x)=lnx,則函數(shù)g(x)=f(x)-f′(x)的零點(diǎn)所在的區(qū)間是


  1. A.
    (0,1)
  2. B.
    (1,2)
  3. C.
    (2,3)
  4. D.
    (3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex,若函數(shù)g(x)滿足f(x)≥g(x)恒成立,則稱g(x)為函數(shù)f(x)的下界函數(shù).
(1)若函數(shù)g(x)=kx是f(x)的下界函數(shù),求實(shí)數(shù)k的取值范圍;
(2)證明:對(duì)任意的m≤2,函數(shù)h(x)=m+lnx都是f(x)的下界函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=ex,若函數(shù)g(x)滿足f(x)≥g(x)恒成立,則稱g(x)為函數(shù)f(x)的下界函數(shù).
(Ⅰ)若函數(shù)g(x)-kx是f(x)的下界函數(shù),求實(shí)數(shù)k的取值范圍;
(Ⅱ)證明:對(duì)于?m≤2,,函數(shù)h(x)=m+lnx都是f(x)的下界函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年河南省新鄉(xiāng)、許昌、平頂山高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:解答題

已知函數(shù)f(x)=ex,若函數(shù)g(x)滿足f(x)≥g(x)恒成立,則稱g(x)為函數(shù)f(x)的下界函數(shù).
(Ⅰ)若函數(shù)g(x)-kx是f(x)的下界函數(shù),求實(shí)數(shù)k的取值范圍;
(Ⅱ)證明:對(duì)于?m≤2,,函數(shù)h(x)=m+lnx都是f(x)的下界函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=lgx,h(x)=log3x,直線y=a(a<0)與這三個(gè)函數(shù)的交點(diǎn)的橫坐標(biāo)分別是x1、x2、x3,則x1、x2、x3的大小關(guān)系是(  )
A、x2<x3<x1B、x1<x3<x2C、x1<x2<x3D、x3<x2<x1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
1
2
ax2-(a-1)x,(a∈R).
(Ⅰ)已知函數(shù)y=g(x)的零點(diǎn)至少有一個(gè)在原點(diǎn)右側(cè),求實(shí)數(shù)a的范圍.
(Ⅱ)記函數(shù)y=F(x)的圖象為曲線C.設(shè)點(diǎn)A(x1,y1),B(x2,y2)是曲線C上的不同兩點(diǎn).如果在曲線C上存在點(diǎn)M(x0,y0),使得:①x0=
x1+x2
2
;②曲線C在點(diǎn)M處的切線平行于直線AB,則稱函數(shù)f(x)=存在“中值相依切線”.
試問:函數(shù)G(x)=f(x)-g(x)(a∈R且a≠0)是否存在“中值相依切線”,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=lnx,g(x)=數(shù)學(xué)公式ax2-(a-1)x,(a∈R).
(Ⅰ)已知函數(shù)y=g(x)的零點(diǎn)至少有一個(gè)在原點(diǎn)右側(cè),求實(shí)數(shù)a的范圍.
(Ⅱ)記函數(shù)y=F(x)的圖象為曲線C.設(shè)點(diǎn)A(x1,y1),B(x2,y2)是曲線C上的不同兩點(diǎn).如果在曲線C上存在點(diǎn)M(x0,y0),使得:①x0=數(shù)學(xué)公式;②曲線C在點(diǎn)M處的切線平行于直線AB,則稱函數(shù)f(x)=存在“中值相依切線”.
試問:函數(shù)G(x)=f(x)-g(x)(a∈R且a≠0)是否存在“中值相依切線”,請(qǐng)說明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案