下列函數(shù)中既是偶函數(shù)且在區(qū)間(0,
π
2
)上單調(diào)遞減的函數(shù)是( 。
A.y=sinxB.y=tanxC.y=cosxD.y=lnx
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中既是偶函數(shù)且在區(qū)間(0,
π2
)上單調(diào)遞減的函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列函數(shù)中既是偶函數(shù)且在區(qū)間(0,
π
2
)上單調(diào)遞減的函數(shù)是(  )
A.y=sinxB.y=tanxC.y=cosxD.y=lnx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

12、下列判斷:①定義在R上的函數(shù)f(x),若f(-1)=f(1),且f(-2)=f(2),則f(x)是偶函數(shù);
②定義在R上的函數(shù)f(x)滿足f(2)>f(1),則f(x)在R上不是減函數(shù);
③定義在R上的函數(shù)f(x)在區(qū)間(-∞,0]上是減函數(shù),在區(qū)間(0,+∞)上也是減函數(shù),則f(x)在R上是減函數(shù);
④既是奇函數(shù)又是偶函數(shù)的函數(shù)有且只有一個.
其中正確命題的個數(shù)是
1
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

下列判斷:①定義在R上的函數(shù)f(x),若f(-1)=f(1),且f(-2)=f(2),則f(x)是偶函數(shù);
②定義在R上的函數(shù)f(x)滿足f(2)>f(1),則f(x)在R上不是減函數(shù);
③定義在R上的函數(shù)f(x)在區(qū)間(-∞,0]上是減函數(shù),在區(qū)間(0,+∞)上也是減函數(shù),則f(x)在R上是減函數(shù);
④既是奇函數(shù)又是偶函數(shù)的函數(shù)有且只有一個.
其中正確命題的個數(shù)是 ________個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列判斷:①定義在R上的函數(shù)f(x),若f(-1)=f(1),且f(-2)=f(2),則f(x)是偶函數(shù);
②定義在R上的函數(shù)f(x)滿足f(2)>f(1),則f(x)在R上不是減函數(shù);
③定義在R上的函數(shù)f(x)在區(qū)間(-∞,0]上是減函數(shù),在區(qū)間(0,+∞)上也是減函數(shù),則f(x)在R上是減函數(shù);
④既是奇函數(shù)又是偶函數(shù)的函數(shù)有且只有一個.
其中正確命題的個數(shù)是 ______個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:①已知函數(shù)y=f(x)在區(qū)間[a,b]上連續(xù),且f(a)f(b)<0,則y=f(x)在[a,b]上零點個數(shù)一定為1個;
②定義在R上的奇函數(shù)f(x)必滿足f(0)=0;
③f(x)=(2x+1)2-2(2x-1)既不是奇函數(shù)又不是偶函數(shù);
A=R,B=R,f:x→y=
1
x+1
,則f為A到B的映射;
f(x)=
1
x
在定義域上是減函數(shù).
其中真命題的序號是
 
(把你認為正確的命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列命題:①已知函數(shù)y=f(x)在區(qū)間[a,b]上連續(xù),且f(a)f(b)<0,則y=f(x)在[a,b]上零點個數(shù)一定為1個;
②定義在R上的奇函數(shù)f(x)必滿足f(0)=0;
③f(x)=(2x+1)2-2(2x-1)既不是奇函數(shù)又不是偶函數(shù);
A=R,B=R,f:x→y=
1
x+1
,則f為A到B的映射;
f(x)=
1
x
在定義域上是減函數(shù).
其中真命題的序號是 ______(把你認為正確的命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

下列命題:①已知函數(shù)y=f(x)在區(qū)間[a,b]上連續(xù),且f(a)f(b)<0,則y=f(x)在[a,b]上零點個數(shù)一定為1個;
②定義在R上的奇函數(shù)f(x)必滿足f(0)=0;
③f(x)=(2x+1)2-2(2x-1)既不是奇函數(shù)又不是偶函數(shù);
數(shù)學(xué)公式,則f為A到B的映射;
數(shù)學(xué)公式在定義域上是減函數(shù).
其中真命題的序號是 ________(把你認為正確的命題的序號都填上).

查看答案和解析>>


同步練習(xí)冊答案