對(duì)于一個(gè)有限數(shù)列A:a1,a2,…an,定義A的蔡查羅和(蔡查羅是數(shù)學(xué)家)為
1
n
(S1+S2+…Sn)
,其中Sk=a1+a2+…ak(1≤k≤n).若一個(gè)99項(xiàng)的數(shù)列:a1,a2,…a99的蔡查羅和為1000,則數(shù)列:2,a1,a2,…a99的蔡查羅和為(  )
A.991B.992C.993D.999
B
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于一個(gè)有限數(shù)列A:a1,a2,…an,定義A的蔡查羅和(蔡查羅是數(shù)學(xué)家)為
1
n
(S1+S2+…Sn)
,其中Sk=a1+a2+…ak(1≤k≤n).若一個(gè)99項(xiàng)的數(shù)列:a1,a2,…a99的蔡查羅和為1000,則數(shù)列:2,a1,a2,…a99的蔡查羅和為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對(duì)于一個(gè)有限數(shù)列A:a1,a2,…an,定義A的蔡查羅和(蔡查羅是數(shù)學(xué)家)為
1
n
(S1+S2+…Sn)
,其中Sk=a1+a2+…ak(1≤k≤n).若一個(gè)99項(xiàng)的數(shù)列:a1,a2,…a99的蔡查羅和為1000,則數(shù)列:2,a1,a2,…a99的蔡查羅和為(  )
A.991B.992C.993D.999

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

對(duì)于一個(gè)有限數(shù)列A:a1,a2,…an,定義A的蔡查羅和(蔡查羅是數(shù)學(xué)家)為數(shù)學(xué)公式,其中Sk=a1+a2+…ak(1≤k≤n).若一個(gè)99項(xiàng)的數(shù)列:a1,a2,…a99的蔡查羅和為1000,則數(shù)列:2,a1,a2,…a99的蔡查羅和為


  1. A.
    991
  2. B.
    992
  3. C.
    993
  4. D.
    999

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年北京市石景山區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知集合Sn={(x1,x2,…,xn)|x1,x2,…,xn是正整數(shù)1,2,3,…,n的一個(gè)排列}(n≥2),函數(shù)
對(duì)于(a1,a2,…an)∈Sn,定義:bi=g(ai-a1)+g(ai-a2)+…+g(ai-ai-1),i∈{2,3,…,n},b1=0,稱bi為ai的滿意指數(shù).排列b1,b2,…,bn為排列a1,a2,…,an的生成列;排列a1,a2,…,an為排列b1,b2,…,bn的母列.
(Ⅰ)當(dāng)n=6時(shí),寫出排列3,5,1,4,6,2的生成列及排列0,-1,2,-3,4,3的母列;
(Ⅱ)證明:若a1,a2,…,an和a′1,a′2,…,a′n為Sn中兩個(gè)不同排列,則它們的生成列也不同;
(Ⅲ)對(duì)于Sn中的排列a1,a2,…,an,定義變換τ:將排列a1,a2,…,an從左至右第一個(gè)滿意指數(shù)為負(fù)數(shù)的項(xiàng)調(diào)至首項(xiàng),其它各項(xiàng)順序不變,得到一個(gè)新的排列.證明:一定可以經(jīng)過有限次變換τ將排列a1,a2,…,an變換為各項(xiàng)滿意指數(shù)均為非負(fù)數(shù)的排列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年北京市西城區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知集合Sn={(x1,x2,…,xn)|x1,x2,…,xn是正整數(shù)1,2,3,…,n的一個(gè)排列}(n≥2),函數(shù)
對(duì)于(a1,a2,…an)∈Sn,定義:bi=g(ai-a1)+g(ai-a2)+…+g(ai-ai-1),i∈{2,3,…,n},b1=0,稱bi為ai的滿意指數(shù).排列b1,b2,…,bn為排列a1,a2,…,an的生成列;排列a1,a2,…,an為排列b1,b2,…,bn的母列.
(Ⅰ)當(dāng)n=6時(shí),寫出排列3,5,1,4,6,2的生成列及排列0,-1,2,-3,4,3的母列;
(Ⅱ)證明:若a1,a2,…,an和a′1,a′2,…,a′n為Sn中兩個(gè)不同排列,則它們的生成列也不同;
(Ⅲ)對(duì)于Sn中的排列a1,a2,…,an,定義變換τ:將排列a1,a2,…,an從左至右第一個(gè)滿意指數(shù)為負(fù)數(shù)的項(xiàng)調(diào)至首項(xiàng),其它各項(xiàng)順序不變,得到一個(gè)新的排列.證明:一定可以經(jīng)過有限次變換τ將排列a1,a2,…,an變換為各項(xiàng)滿意指數(shù)均為非負(fù)數(shù)的排列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省蘇南六校高三聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

對(duì)于各項(xiàng)均為整數(shù)的數(shù)列{an},如果滿足ai+i(i=1,2,3,…)為完全平方數(shù),則稱數(shù)列{an}具有“P性質(zhì)”;
不論數(shù)列{an}是否具有“P性質(zhì)”,如果存在與{an}不是同一數(shù)列的{bn},且{bn}同時(shí)滿足下面兩個(gè)條件:①b1,b2,b3,…,bn是a1,a2,a3,…,an的一個(gè)排列;②數(shù)列{bn}具有“P性質(zhì)”,則稱數(shù)列{an}具有“變換P性質(zhì)”.
(Ⅰ)設(shè)數(shù)列{an}的前n項(xiàng)和,證明數(shù)列{an}具有“P性質(zhì)”;
(Ⅱ)試判斷數(shù)列1,2,3,4,5和數(shù)列1,2,3,…,11是否具有“變換P性質(zhì)”,具有此性質(zhì)的數(shù)列請(qǐng)寫出相應(yīng)的數(shù)列{bn},不具此性質(zhì)的說明理由;
(Ⅲ)對(duì)于有限項(xiàng)數(shù)列A:1,2,3,…,n,某人已經(jīng)驗(yàn)證當(dāng)n∈[12,m2](m≥5)時(shí),數(shù)列A具有“變換P性質(zhì)”,試證明:當(dāng)n∈[m2+1,(m+1)2]時(shí),數(shù)列A也具有“變換P性質(zhì)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年北京市西城區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

對(duì)于各項(xiàng)均為整數(shù)的數(shù)列{an},如果滿足ai+i(i=1,2,3,…)為完全平方數(shù),則稱數(shù)列{an}具有“P性質(zhì)”;
不論數(shù)列{an}是否具有“P性質(zhì)”,如果存在與{an}不是同一數(shù)列的{bn},且{bn}同時(shí)滿足下面兩個(gè)條件:①b1,b2,b3,…,bn是a1,a2,a3,…,an的一個(gè)排列;②數(shù)列{bn}具有“P性質(zhì)”,則稱數(shù)列{an}具有“變換P性質(zhì)”.
(Ⅰ)設(shè)數(shù)列{an}的前n項(xiàng)和,證明數(shù)列{an}具有“P性質(zhì)”;
(Ⅱ)試判斷數(shù)列1,2,3,4,5和數(shù)列1,2,3,…,11是否具有“變換P性質(zhì)”,具有此性質(zhì)的數(shù)列請(qǐng)寫出相應(yīng)的數(shù)列{bn},不具此性質(zhì)的說明理由;
(Ⅲ)對(duì)于有限項(xiàng)數(shù)列A:1,2,3,…,n,某人已經(jīng)驗(yàn)證當(dāng)n∈[12,m2](m≥5)時(shí),數(shù)列A具有“變換P性質(zhì)”,試證明:當(dāng)n∈[m2+1,(m+1)2]時(shí),數(shù)列A也具有“變換P性質(zhì)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于各項(xiàng)均為整數(shù)的數(shù)列{an},如果滿足ai+i(i=1,2,3,…)為完全平方數(shù),則稱數(shù)列{an}具有“P性質(zhì)”;
不論數(shù)列{an}是否具有“P性質(zhì)”,如果存在與{an}不是同一數(shù)列的{bn},且{bn}同時(shí)滿足下面兩個(gè)條件:①b1,b2,b3,…,bn是a1,a2,a3,…,an的一個(gè)排列;②數(shù)列{bn}具有“P性質(zhì)”,則稱數(shù)列{an}具有“變換P性質(zhì)”.
(Ⅰ)設(shè)數(shù)列{an}的前n項(xiàng)和Sn=
n3
(n2-1)
,證明數(shù)列{an}具有“P性質(zhì)”;
(Ⅱ)試判斷數(shù)列1,2,3,4,5和數(shù)列1,2,3,…,11是否具有“變換P性質(zhì)”,具有此性質(zhì)的數(shù)列請(qǐng)寫出相應(yīng)的數(shù)列{bn},不具此性質(zhì)的說明理由;
(Ⅲ)對(duì)于有限項(xiàng)數(shù)列A:1,2,3,…,n,某人已經(jīng)驗(yàn)證當(dāng)n∈[12,m2](m≥5)時(shí),數(shù)列A具有“變換P性質(zhì)”,試證明:當(dāng)n∈[m2+1,(m+1)2]時(shí),數(shù)列A也具有“變換P性質(zhì)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•石景山區(qū)二模)已知集合Sn={(x1,x2,…,xn)|x1,x2,…,xn是正整數(shù)1,2,3,…,n的一個(gè)排列}(n≥2),函數(shù)g(x)=
1, x>0
-1,  x<0.

對(duì)于(a1,a2,…an)∈Sn,定義:bi=g(ai-a1)+g(ai-a2)+…+g(ai-ai-1),i∈{2,3,…,n},b1=0,稱bi為ai的滿意指數(shù).排列b1,b2,…,bn為排列a1,a2,…,an的生成列;排列a1,a2,…,an為排列b1,b2,…,bn的母列.
(Ⅰ)當(dāng)n=6時(shí),寫出排列3,5,1,4,6,2的生成列及排列0,-1,2,-3,4,3的母列;
(Ⅱ)證明:若a1,a2,…,an和a′1,a′2,…,a′n為Sn中兩個(gè)不同排列,則它們的生成列也不同;
(Ⅲ)對(duì)于Sn中的排列a1,a2,…,an,定義變換τ:將排列a1,a2,…,an從左至右第一個(gè)滿意指數(shù)為負(fù)數(shù)的項(xiàng)調(diào)至首項(xiàng),其它各項(xiàng)順序不變,得到一個(gè)新的排列.證明:一定可以經(jīng)過有限次變換τ將排列a1,a2,…,an變換為各項(xiàng)滿意指數(shù)均為非負(fù)數(shù)的排列.

查看答案和解析>>


同步練習(xí)冊(cè)答案