函數(shù)y=(tanx)+
π
5
,x≠
π
2
+kπ
(k∈Z)( 。
A.是奇函數(shù)
B.是偶函數(shù)
C.既不是奇函數(shù)也不是偶函數(shù)
D.有無奇偶性不能確定
C
請?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=(tanx)+
π
5
,x≠
π
2
+kπ
(k∈Z)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)y=(tanx)+
π
5
,x≠
π
2
+kπ
(k∈Z)(  )
A.是奇函數(shù)
B.是偶函數(shù)
C.既不是奇函數(shù)也不是偶函數(shù)
D.有無奇偶性不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)y=(tanx)+
π
5
,x≠
π
2
+kπ
(k∈Z)(  )
A.是奇函數(shù)
B.是偶函數(shù)
C.既不是奇函數(shù)也不是偶函數(shù)
D.有無奇偶性不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列結(jié)論:
①函數(shù)y=
1
log0.5(4x-3)
的定義域?yàn)椋?span id="1aodj7l" class="MathJye">
3
4
,+∞);
sin600°=
3
2
;
③函數(shù)y=sin(2x+
4
)
的圖象關(guān)于點(diǎn)(-
π
8
,0)
對稱;
④若角的集合A={α|α=
2
+
π
4
,k∈Z}
,B={β|α=kπ±
π
4
,k∈Z}
,則A=B;
⑤函數(shù)y=|tanx|的最小正周期是π,對稱軸方程為直線x=
2
(k∈Z)

其中正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列五個(gè)命題:
①函數(shù)y=2sin(2x-
π
3
)
的一條對稱軸是x=
12

②函數(shù)y=tanx的圖象關(guān)于點(diǎn)(
π
2
,0)對稱;
③正弦函數(shù)在第一象限為增函數(shù);
④若sin(2x1-
π
4
)=sin(2x2-
π
4
)
,則x1-x2=kπ,其中k∈Z.
以上四個(gè)命題中正確的有
 
(填寫正確命題前面的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列五個(gè)結(jié)論:
①函數(shù)y=2sin(2x-
π
3
)
有一條對稱軸是x=
12
;
②函數(shù)y=tanx的圖象關(guān)于點(diǎn)(
π
2
,0)對稱;
③正弦函數(shù)在第一象限為增函數(shù);
④要得到y=3sin(2x+
π
4
)
的圖象,只需將y=3sin2x的圖象左移
π
4
個(gè)單位;
⑤若sin(2x1-
π
4
)=sin(2x2-
π
4
)
,則x1-x2=kπ,其中k∈Z;
其中正確的有
①②
①②
.(填寫正確結(jié)論前面的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出下列五個(gè)結(jié)論:
①函數(shù)y=2sin(2x-
π
3
)
有一條對稱軸是x=
12
;
②函數(shù)y=tanx的圖象關(guān)于點(diǎn)(
π
2
,0)對稱;
③正弦函數(shù)在第一象限為增函數(shù);
④要得到y=3sin(2x+
π
4
)
的圖象,只需將y=3sin2x的圖象左移
π
4
個(gè)單位;
⑤若sin(2x1-
π
4
)=sin(2x2-
π
4
)
,則x1-x2=kπ,其中k∈Z;
其中正確的有______.(填寫正確結(jié)論前面的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出下列五個(gè)命題:
①函數(shù)y=2sin(2x-
π
3
)
的一條對稱軸是x=
12
;②函數(shù)y=tanx的圖象關(guān)于點(diǎn)(
π
2
,0)對稱;③正弦函數(shù)在第一象限為增函數(shù)④若sin(2x1-
π
4
)=sin(2x2-
π
4
)
,則x1-x2=kπ,其中k∈Z以上四個(gè)命題中正確的有______(填寫正確命題前面的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

給出下列五個(gè)命題:
(1)函數(shù)y=-sin(kπ+x)(k∈Z)是奇函數(shù);
(2)函數(shù)f(x)=tanx的圖象關(guān)于點(diǎn)數(shù)學(xué)公式對稱;
(3)函數(shù)f(x)=sin|x|是最小正周期為π的周期函數(shù);
(4)設(shè)θ是第二象限角,則數(shù)學(xué)公式,且數(shù)學(xué)公式;
(5)函數(shù)y=cos2x+sinx的最小值是-1.
其中正確的命題是


  1. A.
    (1)、(2)、(3)
  2. B.
    (1)、(2)、(5)
  3. C.
    (1)、(5)
  4. D.
    (1)、(3)、(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法:
①函數(shù)f(x)=2cos2(
π
4
-x)-1
是最小正周期為π的偶函數(shù);
②函數(shù)y=cos(
π
4
-2x)+1
可以改寫為y=sin(
π
4
+2x)+1

③函數(shù)y=cos(
π
4
-2x)+1
的圖象關(guān)于直線x=
8
對稱;
④函數(shù)y=tanx的圖象的所有的對稱中心為(kπ,0),k∈Z;
⑤將函數(shù)y=sin2x的圖象先向左平移
π
4
個(gè)單位,然后縱坐標(biāo)不變,橫坐標(biāo)伸長為原來
的2倍,所得圖象的函數(shù)解析式是y=sin(x+
π
4
)
;
其中所有正確的命題的序號(hào)是
②③
②③
.(請將正確的序號(hào)填在橫線上)

查看答案和解析>>


同步練習(xí)冊答案