在平面直角坐標(biāo)系中,點(diǎn)A(-2,-1)繞原點(diǎn)O逆時針旋轉(zhuǎn)180°得到點(diǎn)B,則點(diǎn)B的坐標(biāo)是( 。
A.(-1,-2)B.(-2,1)C.(2,-1)D.(2,1)
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

14、在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(-1,-2),將OA繞原點(diǎn)O逆時針旋轉(zhuǎn)180得到OA′,則點(diǎn)A′的坐標(biāo)為
(1,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,點(diǎn)A(-1,1),將線段OA(O為坐標(biāo)原點(diǎn))繞點(diǎn)O逆時針旋轉(zhuǎn)135°得線段OB,則點(diǎn)B的坐標(biāo)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn).
(1)若點(diǎn)P的坐標(biāo)為(1,2),將線段OP繞原點(diǎn)O逆時針旋轉(zhuǎn)90°得到線段OQ,則點(diǎn)Q的坐標(biāo)為
 

(2)若過點(diǎn)P的直線L1的函數(shù)解析式為y=2x,求過點(diǎn)P且與直線L1垂直的直線L2的函數(shù)解析式;
(3)若直線L1的函數(shù)解析式為y=x+4,直線L2的函數(shù)解析式為y=-x-2,求證:直線L1與直線L2互相垂直;
(4)設(shè)直線L1的函數(shù)關(guān)系式為y=k1x+b1,直線L2的函數(shù)關(guān)系式為y=k2x+b2(k1•k2≠0).根據(jù)以上的解題結(jié)論,請你用一句話來總結(jié)概括:直線L1和直線L2互相垂直與k1、k2的關(guān)系.
(5)請運(yùn)用(4)中的結(jié)論來解決下面的問題:
在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(-3,-6),點(diǎn)B的坐標(biāo)為(7,2),求線段AB的垂直平分線的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)P(m,-1)(m>0).連接OP,將線段OP繞點(diǎn)O按逆時針方向旋轉(zhuǎn)90°得到線段OM,且點(diǎn)M是拋物線y=ax2+bx+c的頂點(diǎn).
(1)若m=1,拋物線y=ax2+bx+c經(jīng)過點(diǎn)(2,2),當(dāng)0≤x≤1時,求y的取值范圍;
(2)已知點(diǎn)A(1,0),若拋物線y=ax2+bx+c與y軸交于點(diǎn)B,直線AB與拋物線y=ax2+bx+c有且只有一個交點(diǎn),請判斷△BOM的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、在平面直角坐標(biāo)系中,點(diǎn)A(-3,4),將線段OA繞原點(diǎn)O順時針旋轉(zhuǎn)90°,得到線段OA′,則點(diǎn)A′的坐標(biāo)為
(4,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(
3
,1),將A繞0逆時針旋轉(zhuǎn)120°至OA′,則點(diǎn)A′的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

9、在平面直角坐標(biāo)系中,點(diǎn)A(-2,-1)繞原點(diǎn)O逆時針旋轉(zhuǎn)180°得到點(diǎn)B,則點(diǎn)B的坐標(biāo)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,點(diǎn)A(3,20)繞原點(diǎn)旋轉(zhuǎn)180°后所得點(diǎn)的坐標(biāo)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn).
(1)若點(diǎn)P的坐標(biāo)為(1,2),將線段OP繞原點(diǎn)O逆時針旋轉(zhuǎn)90°得到線段OQ,則點(diǎn)Q的坐標(biāo)為______.
(2)若過點(diǎn)P的直線L1的函數(shù)解析式為y=2x,求過點(diǎn)P且與直線L1垂直的直線L2的函數(shù)解析式;
(3)若直線L1的函數(shù)解析式為y=x+4,直線L2的函數(shù)解析式為y=-x-2,求證:直線L1與直線L2互相垂直;
(4)設(shè)直線L1的函數(shù)關(guān)系式為y=k1x+b1,直線L2的函數(shù)關(guān)系式為y=k2x+b2(k1•k2≠0).根據(jù)以上的解題結(jié)論,請你用一句話來總結(jié)概括:直線L1和直線L2互相垂直與k1、k2的關(guān)系.
(5)請運(yùn)用(4)中的結(jié)論來解決下面的問題:
在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(-3,-6),點(diǎn)B的坐標(biāo)為(7,2),求線段AB的垂直平分線的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)P(m,-1)(m>0).連接OP,將線段OP繞點(diǎn)O按逆時針方向旋轉(zhuǎn)90°得到線段OM,且點(diǎn)M是拋物線y=ax2+bx+c的頂點(diǎn).
(1)若m=1,拋物線y=ax2+bx+c經(jīng)過點(diǎn)(2,2),當(dāng)0≤x≤1時,求y的取值范圍;
(2)已知點(diǎn)A(1,0),若拋物線y=ax2+bx+c與y軸交于點(diǎn)B,直線AB與拋物線y=ax2+bx+c有且只有一個交點(diǎn),請判斷△BOM的形狀,并說明理由.

查看答案和解析>>


同步練習(xí)冊答案