設(shè)f(x)=
2x2
x+1
,g(x)=ax+5-2a(a>0)
,若對(duì)于任意x3∈[0,1],總存在x0∈[0,1],使得g(x0)=f(x1)成立,則實(shí)數(shù)a的取值范圍是( 。
A.[
5
2
,4]
B.[-
1
2
,2]
C.[1,4]D.[
1
2
,
5
2
]
A
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
2x2
x+1
,g(x)=ax+5-2a(a>0)
,若對(duì)于任意x1∈[0,1],總存在x0∈[0,1],使得g(x0)=f(x1)成立,則a的取值范圍是( 。
A、[
5
2
,4]
B、[4,+∞)
C、(0,
5
2
]
D、[
5
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)f(x)=
2x2
x+1
,g(x)=ax+5-2a(a>0)
,若對(duì)于任意x1∈[0,1],總存在x0∈[0,1],使得g(x0)=f(x1)成立,則a的取值范圍是( 。
A.[
5
2
,4]
B.[4,+∞)C.(0,
5
2
]
D.[
5
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
2x2x+1
,g(x)=ax+5-2a(a>0).
(1)求f(x)在x∈[0,1]上的值域;
(2)若對(duì)于任意x1∈[0,1],總存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
2x2
x+1
,g(x)=ax+5-2a(a>0),若對(duì)于任意x1∈[0,1],總存在x0∈[0,1],使得g(x0)=f(x1)成立,則a的取值范圍是
5
2
≤a≤4
5
2
≤a≤4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)f(x)=
2x2
x+1
,g(x)=ax+5-2a(a>0).
(1)求f(x)在x∈[0,1]上的值域;
(2)若對(duì)于任意x1∈[0,1],總存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)f(x)=
2x2
x+1
,g(x)=ax+5-2a(a>0),若對(duì)于任意x1∈[0,1],總存在x0∈[0,1],使得g(x0)=f(x1)成立,則a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
2x2
x+1
,g(x)=ax+5-2a(a>0)
,若對(duì)于任意x1∈[0,1],總存在x0∈[0,1],使得g(x0)=f(x1)成立,則實(shí)數(shù)a的取值范圍是( 。
A、[
5
2
,4]
B、[-
1
2
,2]
C、[1,4]
D、[
1
2
,
5
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)f(x)=
2x2
x+1
,g(x)=ax+5-2a(a>0)
,若對(duì)于任意x3∈[0,1],總存在x0∈[0,1],使得g(x0)=f(x1)成立,則實(shí)數(shù)a的取值范圍是( 。
A.[
5
2
,4]
B.[-
1
2
,2]
C.[1,4]D.[
1
2
,
5
2
]

查看答案和解析>>


同步練習(xí)冊(cè)答案