x(x-y)2-y(y-x)2可化為( 。
A.(x-y)2B.(x-y)3C.(y-x)2D.(y-x)2
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

方程x2-
3
=(
3
-
2
)x化為一般形式,它的各項系數(shù)之和可能是( 。
A.
2
B.-
2
C.
2
-
3
D.1+
2
-2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

x(x-y)2-y(y-x)2可化為( 。
A.(x-y)2B.(x-y)3C.(y-x)2D.(y-x)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列方程變形正確的是( 。
A.方程3x﹣2=2x﹣1移項,得3x﹣2x=﹣1﹣2
B.方程3﹣x=2﹣5(x﹣1)去括號,得3﹣x=2﹣5x﹣1
C.方程可化為3x=6
D.方程系數(shù)化為1,得x=﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知a>0,那么
-4a
b
可化簡為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知a>0,那么
-4a
b
可化簡為( 。
A.2b
-ab
B.-
2
b
ab
C.-
2
b
-ab
D.
2
b
-ab

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料,按要求回答問題.
(1)觀察下面兩塊三角尺,它們有一個共同的性質(zhì):∠A=2∠B,我們由此出發(fā)來進(jìn)行思考.
在圖(1)中作斜邊上的高CD,由于∠B=30°,可知c=2b,∠ACD=30°,于是AD=
b
2
,BD=c-
b
2
,由于△CDB∽△ACB,可知,即a2=c•BD.同理b2=c•AD,于是a2-b2=c(BD-AD)=c(c-b)=bc.對于圖(2),由勾股定理有a2=b2+c2,由于b=c,故也有a2-b2=bc.
在△ABC中,如果一個內(nèi)角等于另一個內(nèi)角的2倍,我們稱這樣的三角形為倍角三角形,兩塊三角尺都是特殊的倍角三角形,對于任意倍角三角形,上面的結(jié)論仍然成立嗎?我們暫時把設(shè)想作為一種猜測:
如圖(3),在△ABC中,若∠CAB=2∠ABC,則a2-b2=bc.
在上述由三角尺的性質(zhì)到“猜測”這一認(rèn)識過程中,用到了下列四種數(shù)學(xué)思想方法中的哪一種選出一個正確的并將其序號填在括號內(nèi)( 。
①分類的思想方法②轉(zhuǎn)化的思想方法③由特殊到一般的思想方法④精英家教網(wǎng)數(shù)形結(jié)合的思想方法
(2)這個猜測是否正確,請證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列方程變形中,正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

閱讀下列材料,按要求回答問題.
(1)觀察下面兩塊三角尺,它們有一個共同的性質(zhì):∠A=2∠B,我們由此出發(fā)來進(jìn)行思考.
在圖(1)中作斜邊上的高CD,由于∠B=30°,可知c=2b,∠ACD=30°,于是AD=數(shù)學(xué)公式,BD=c-數(shù)學(xué)公式,由于△CDB∽△ACB,可知,即a2=c•BD.同理b2=c•AD,于是a2-b2=c(BD-AD)=c(c-b)=bc.對于圖(2),由勾股定理有a2=b2+c2,由于b=c,故也有a2-b2=bc.
在△ABC中,如果一個內(nèi)角等于另一個內(nèi)角的2倍,我們稱這樣的三角形為倍角三角形,兩塊三角尺都是特殊的倍角三角形,對于任意倍角三角形,上面的結(jié)論仍然成立嗎?我們暫時把設(shè)想作為一種猜測:
如圖(3),在△ABC中,若∠CAB=2∠ABC,則a2-b2=bc.
在上述由三角尺的性質(zhì)到“猜測”這一認(rèn)識過程中,用到了下列四種數(shù)學(xué)思想方法中的哪一種選出一個正確的并將其序號填在括號內(nèi)
①分類的思想方法②轉(zhuǎn)化的思想方法③由特殊到一般的思想方法④數(shù)形結(jié)合的思想方法
(2)這個猜測是否正確,請證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列方程變形中,正確的是( 。
A.方程3x-2=2x+1,移項,得3x-2x=-1+2
B.方程3-x=2-5(x-1),去括號,得3-x=2-5x-1
C.方程
2
3
x=
3
2
,未知數(shù)系數(shù)化為1,得x=1
D.方程
x-1
0.2
-
0.2x
0.5
=1
,可化成
10(x-1)
2
-
2x
5
=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

把二次函數(shù)y=x2-4x-1配方,可化為( 。

查看答案和解析>>


同步練習(xí)冊答案