若x2-4x+m=(x-2)(x+n),則m、n的值分別為( 。
A.-4,2B.4,-2C.-4,-2D.4,2
B
請在這里輸入關(guān)鍵詞:
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

8、若x2-4x+m=(x-2)(x+n),則m、n的值分別為(  )

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若x2-4x+m=(x-2)(x+n),則m、n的值分別為( 。
A.-4,2B.4,-2C.-4,-2D.4,2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

若x2-4x+m=(x-2)(x+n),則m、n的值分別為


  1. A.
    -4,2
  2. B.
    4,-2
  3. C.
    -4,-2
  4. D.
    4,2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•日照)如圖,已知拋物線y1=-x2+4x和直線y2=2x.我們約定:當x任取一值時,x對應的函數(shù)值分別為y1、y2,若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.下列判斷:
①當x>2時,M=y2;②當x<0時,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,則x=1.
其中正確的有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:二次函數(shù)y=x2-4x+a,下列說法中錯誤的個數(shù)是( 。
①若圖象與x軸有交點,則a≤4;
②若該拋物線的頂點在直線y=2x上,則a的值為-8;
③當a=3時,不等式x2-4x+a>0的解集是1<x<3;
④若將圖象向上平移1個單位,再向左平移3個單位后過點(1,-2),則a=-3;
⑤若拋物線與x軸有兩個交點,橫坐標分別為x1、x2,則當x取x1+x2時的函數(shù)值與x取0時的函數(shù)值相等.

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年浙江省溫州市育英學校九年級(上)月考數(shù)學試卷B班(9月份)(解析版) 題型:選擇題

已知:二次函數(shù)y=x2-4x+a,下列說法中錯誤的個數(shù)是( )
①若圖象與x軸有交點,則a≤4;
②若該拋物線的頂點在直線y=2x上,則a的值為-8;
③當a=3時,不等式x2-4x+a>0的解集是1<x<3;
④若將圖象向上平移1個單位,再向左平移3個單位后過點(1,-2),則a=-3;
⑤若拋物線與x軸有兩個交點,橫坐標分別為x1、x2,則當x取x1+x2時的函數(shù)值與x取0時的函數(shù)值相等.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知:二次函數(shù)y=x2-4x-a,下列說法中錯誤的個數(shù)是( 。
①若圖象與x軸有交點,則a≤4;②若該拋物線的頂點在直線y=2x上,則a的值為-8;
③當a=3時,不等式x2-4x+a>0的解集是(3,0);
④若將圖象向上平移1個單位,再向左平移3個單位后過點x,則a=-1;
⑤若拋物線與x軸有兩個交點,橫坐標分別為x1、x2,則當x取x1+x2時的函數(shù)值與x取0時的函數(shù)值相等.
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

已知:二次函數(shù)y=x2-4x+a,下列說法中錯誤的個數(shù)是
①若圖象與x軸有交點,則a≤4;
②若該拋物線的頂點在直線y=2x上,則a的值為-8;
③當a=3時,不等式x2-4x+a>0的解集是1<x<3;
④若將圖象向上平移1個單位,再向左平移3個單位后過點(1,-2),則a=-3;
⑤若拋物線與x軸有兩個交點,橫坐標分別為x1、x2,則當x取x1+x2時的函數(shù)值與x取0時的函數(shù)值相等.


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下面的材料:∵ax2+bx+c=0(a≠0)的根為x1=
-b+
b2-4ac
2a
.,x2=
-b-
b2-4ac
2a

x1+x2=
-2b
2a
=-
b
a
x1x2=
b2-(b2-4ac)
4a2
=
c
a

綜上所述得,設(shè)ax2+bx+c=0(a≠0)的兩根為x1、x2,則有x1+x2=-
b
a
,x1x2=
c
a

請利用這一結(jié)論解決下列問題:
(1)若矩形的長和寬是方程4x2-13x+3=0的兩個根,則矩形的周長為
13
2
13
2
,面積為
3
4
3
4

(2)若2+
3
是x2-4x+c=0的一個根,求方程的另一個根及c的值.
(3)直角三角形的斜邊長是5,另兩條直角邊的長分別是x的方程:x2+(2m-1)x+m2+3=0的解,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年北京市101中學九年級(上)第一次月考數(shù)學試卷(解析版) 題型:解答題

閱讀下列材料:若關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個實數(shù)根分別為x1、x2,則
解決下面問題:已知關(guān)于x的一元二次方程(2x+n)2=4x有兩個非零不等實數(shù)根x1、x2,設(shè)
(1)求n的取值范圍;
(2)試用關(guān)于n的代數(shù)式表示出m;
(3)是否存在這樣的n值,使m的值等于1?若存在,求出這樣的所有n的值;若不存在,請說明理由.

查看答案和解析>>


同步練習冊答案