定義在R上的可導(dǎo)函數(shù)f(x)=x2+2xf′(2)+15,在閉區(qū)間[0,m]上有最大值15,最小值-1,則m的取值范圍是( 。
A.m≥2B.2≤m≤4C.m≥4D.4≤m≤8
D
請?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的可導(dǎo)函數(shù)f(x)=x2+2xf′(2)+15,在閉區(qū)間[0,m]上有最大值15,最小值-1,則m的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省杭州地區(qū)七校聯(lián)考高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

定義在R上的可導(dǎo)函數(shù)f(x)=x2+2xf′(2)+15,在閉區(qū)間[0,m]上有最大值15,最小值-1,則m的取值范圍是( )
A.m≥2
B.2≤m≤4
C.m≥4
D.4≤m≤8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義在R上的可導(dǎo)函數(shù)f(x)=x2+2xf′(2)+15,在閉區(qū)間[0,m]上有最大值15,最小值-1,則m的取值范圍是( 。
A.m≥2B.2≤m≤4C.m≥4D.4≤m≤8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

定義在R上的可導(dǎo)函數(shù)f(x)=x2+2xf′(2)+15,在閉區(qū)間[0,m]上有最大值15,最小值-1,則m的取值范圍是


  1. A.
    m≥2
  2. B.
    2≤m≤4
  3. C.
    m≥4
  4. D.
    4≤m≤8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的可導(dǎo)函數(shù)f(x)滿足f(-x)=f(x),f(x-2)=f(x+2),且當(dāng)x∈[2,4]時(shí),f(x)=x2+2xf(2),則f(-
1
2
)與f(
16
3
)的大小關(guān)系是( 。
A、f(-
1
2
)=f(
16
3
B、f(-
1
2
)<f(
16
3
C、f(-
1
2
)>f(
16
3
D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省杭州市建德市新安江中學(xué)高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

定義在R上的可導(dǎo)函數(shù)f(x)滿足f(-x)=f(x),f(x-2)=f(x+2),且當(dāng)x∈[2,4]時(shí),f(x)=x2+2xf(2),則f(-)與f()的大小關(guān)系是( )
A.f(-)=f(
B.f(-)<f(
C.f(-)>f(
D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省杭州市七校聯(lián)考高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

定義在R上的可導(dǎo)函數(shù)f(x)滿足f(-x)=f(x),f(x-2)=f(x+2),且當(dāng)x∈[2,4]時(shí),f(x)=x2+2xf(2),則f(-)與f()的大小關(guān)系是( )
A.f(-)=f(
B.f(-)<f(
C.f(-)>f(
D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省荊州中學(xué)高三第二次質(zhì)量檢測數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

定義在R上的可導(dǎo)函數(shù)f(x)滿足f(-x)=f(x),f(x-2)=f(x+2),且當(dāng)x∈[2,4]時(shí),f(x)=x2+2xf(2),則f(-)與f()的大小關(guān)系是( )
A.f(-)=f(
B.f(-)<f(
C.f(-)>f(
D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省荊州中學(xué)高三第二次質(zhì)量檢測數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

定義在R上的可導(dǎo)函數(shù)f(x)滿足f(-x)=f(x),f(x-2)=f(x+2),且當(dāng)x∈[2,4]時(shí),f(x)=x2+2xf(2),則f(-)與f()的大小關(guān)系是( )
A.f(-)=f(
B.f(-)<f(
C.f(-)>f(
D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

定義在R上的可導(dǎo)函數(shù)f(x)滿足f(-x)=f(x),f(x-2)=f(x+2),且當(dāng)x∈[2,4]時(shí),f(x)=x2+2xf(2),則f(-數(shù)學(xué)公式)與f(數(shù)學(xué)公式)的大小關(guān)系是


  1. A.
    f(-數(shù)學(xué)公式)=f(數(shù)學(xué)公式
  2. B.
    f(-數(shù)學(xué)公式)<f(數(shù)學(xué)公式
  3. C.
    f(-數(shù)學(xué)公式)>f(數(shù)學(xué)公式
  4. D.
    不確定

查看答案和解析>>


同步練習(xí)冊答案